X
تبلیغات

طراحی سایت

(علوم تجربی)

طراحی سایت


(علوم تجربی)
 
بوی باران بوی سبزه بوی خاک برگهای شسته باران خورده پاک ... نرم نرمک میرسداینک بهار خوشبحال روزگار
نوشته شده در تاريخ 89/09/27 توسط  محمدصادق

نگاه اجمالی

بلور شناسی ، علم مطالعه بلورهاست. با ارائه روشی برای توضیح چگونگی تعیین خواص فیزیکی ماده از روی سطح آن ، یعنی اصل تقارن بلور شناسی بصورت علمی مستقل در آمد. در دهه 1880 ، فیزیکدانان شواهد کافی گرد آورده بودند که پدیده‌های مختلفی از قبیل در شکستگی ، انبساط گرمایی ، وقف الکتریسیته و پیزو الکتریسیته را باید با استفاده از شکل بلور توضیح داد. برای مطالعه بلورها روشهای مختلفی وجود دارد که از مهمترین آنها بلور شناسی توسط اشعه ایکس و روشهای پراش الکترون.

سیر تحولی و رشد

مطالعه بلورها به دوران یونانیها و رومیها و مطالعات کوارتزهای گوناگون ، توسط ننوفراستو و پلینیو ، باز می‌گردد. در سده هفدهم نخستین تلاشها برای توصیف نظم ساختاری بلورها به عمل آمد. رابرت هوک اظهار داشت که مشکل کوارتز را با فرض این که کوارتز از آرایش تناوبی کره‌هایی تشکیل شده باشد، می‌توان توضیح داد. کریستیان هویگنس به منظور توصیف پدیده دو شکستی نور ، فرض کرد که کلسیت از آرایش تناوبی بیضیهای دوار تشکیل شده است. در سال 1784 ، ژنه ژوست هادی این فرض را مطح کرد که در بلورها مولکولها در گروههایی به شکل متوازی السطوح قرار گرفته‌اند. در آرایش فضایی این گروهها می‌تواند شکل بلوری ماکروسکوپیکی مشاهده شده را توضیح دهد.

در سال 1827 اوگوست کوشی معادله مربوط به کشسانی را بدست آورد و با این مطالعات و با استفاده از بیست و یک پارامتر توانست شرح دهد، چگونه جسم جامد تحت اثر کنش خارجی معلوم کرنش می‌کند. او به مطالعات خود ادامه داد و دریافت که برای توصیف بلورها با توجه به طبیعت شبکه‌ای‌ آنها به پارامترهای کمتری نیاز است. پنج سال بعد توانست ارنست نویمن این نتیجه‌ها را برابر مطالعه برهمکنش میان نورد ماده بر اساس مکانیک بکار برد. او فرض کرد که نور از ذرات خردی درست شده است. دانشجوی وی والدر سار فوگست که بعدها استاد دانشگاه کوتینگتون شد، نخستین کسی بود که تمام اطلاعات و دستاوردهای مربوط به ارتباط میان خواص فیزیکی و ساختار بلورها را در تناوبی گرد آورد.

بلورشناسی نوین

در سال 1912 ، بلورشناسی نوین متولد یافت. در آن سال ماکس و گروهش تصویری از پراش پرتوهای ایکس توسط بلور 3ns بدست آوردند. این آزمایشها سرشت موجی پرتوهای ایکس را ، که ویلهم کنراد رونتگن در اواخر سده نوزدهم کشف کرده بود و همچنین آرایش تناوبی خوشه‌های اتمها را در دوران بلور به اثبات رساند. ویلیام لارش براک و پدرش ، ویلیام هنری براگ در همین زمینه به پژوهش پرداختند و معادله مشهور زیر را بدست آوردند:


2sinӨ = nλ

که در آن d فاضله میان صفحه‌ای خانواده معینی از صفحه‌های بلوری ، n که مرتبه بازتاب نامیده می شود، عدد طبیعی λ طول موج ایکس مورد استفاده و Ө زاویه فرود و زاویه بازتاب باریکه است. این معادله می‌گوید که کدام زاویه برای بازتاب با طول موج و خانواده صفحه‌های خاص مناسب است، بازتابهایی که از لحاظ هندسی مجازند در طبیعت یافت می‌شوند.

بلور شناسی با پرتو ایکس

اگر نمونه‌ای از تک بلور را با استفاده از پرتوهای سفید ایکس ، پرتوهایی که نه یک طول موج ، بلکه گستره‌ای از طول موجها را در بردارد مورد مطالعه قرار دهیم. نقش خون لاوه بدست می‌آید تحت این شرایط در معادله 2dsinӨ = nλ می‌تواند مقادیری زیاد داشته باشد. اما Ө زاویه‌ای میان پرتو فرودی و صفحه ، برای یک خانواده صفحات خاص مقداری ثابت است. معمولا طول موجی مانند λ وجود دارد که در معادله براگ صدق می‌کنند و بازتاب رخ می‌دهد.

اگر نمونه‌ای را با فیلم عکاسی یا آشکارسازی جدید دیگری احاطه کنیم. در نقاط مختلف روی فیلم لکه‌هایی بدست می آوردیم که به پرتوهای بازتابیده از خانواده‌های مختلف صفحات بلور مربوط می‌شوند. با پردازش این داده‌ها به طریق ریاضی به آنچه نقش پراشی را بوجود می‌آورد می‌توان پی برد. در نتیجه ، ساختار میکروسکوپی بلور را معین می‌کند، یعنی می‌توان فهمید شبکه بلوری این ساختار چگونه است و چه اتمهایی در تلاقی شبکه‌ای قرار دارند.

روش پودری

برای مطالعه بلور شناسی توسط اشعه ایکس روشهای استاندارد دیگری هم وجود دارند که در این میان روش پودر از همه رایجتر است. در روش پودر بجای تک بعدی از نمونه‌ای استفاده می‌شود که بصورت بلورهای کوچکی به ابعاد 1µm یا کمتر خرده شده است. در این روش باریکه تک فام از پرتوهای ایکس به نمونه تابیده می‌شود. و در این حال برای هر خانواده خاصی از صفحات تعداد زیادی بلورک با سمتگیری مناسب پیدا می‌شوند که بازتاب براگ فرودی است. اما تند چتری که هر تکه از پارچه آن با دسته چتر زاویه‌ای یکسان می‌سازند. باریکه‌های بازتابیده روی مخروطی قرار می‌گیرند که گشودگی آن دو برابر گشودگی مخروط قبلی است. زیرا باریکه بازتابیده نسبت به باریکه اولیه زاویه می‌سازد و این در حالی است که زاویه بین صفحه و باریکی اولیه برابر Ө است.

اگر فیلم عکاسی را در راه باریکه خروجی قرار دهیم، از تلاقی مخروط اخیر با صفحه عکاسی یک دایره بدست می‌آید: فیلم عکاسی را معمولا به شکل نوار باریک دایره‌ای در می‌آوردند و آنرا روی صفحه‌ای که شامل باریکه خروجی است قرار می‌دهیم. فیلم را سوراخ می‌کنند تا باریکه بتواند به نمونه برسد. از تلاقی مخروطهای بازتابشی مربوط به صفحه‌های مختلف بلور فیلم نقش پراشی خطی بدست می‌آید.

بلور شناسی به روش پراش الکترون

در آغاز دهه 1990 روشهای جدیدی پیدا شدند که مشاهده مستقیم سطحهای بلورین را امکان می‌سازند. درک تغییرات ریخت شناسی که هنگام رویاندن بلور برای کاربردهای الکترونیک روی می‌دهند. با استفاده از پراش الکترون بجای پرتو ایکس و تحت زاویه‌ای کم از سطح بلورها حاصل شده است. با استفاده از میکروسکوپ تونلی روبشی برای نخستین بار ، امکان مشاهده مستقیم ساختار شبکه‌ای بلورها از طریق مشاهده اتم منفرد فراهم شد.



نوشته شده در تاريخ 89/09/27 توسط  محمدصادق

ریشه لغوی

یونانیان واژه متیورولوگیا را ، برگرفته از کلمه «متیوروس» ، به معنی اشیای معلق در آزمایشهای مربوط به هوا ، به اضافه «لوگوس» که به خطابه یا درس ترجمه شده است، برای این علم بکار برده‌اند. لیکن ، امروزه مطالعه جو زمین چنان به رشته‌های تخصصی تقسیم شده است که واژه فراگیر متئورولوژی (هواشناسی) که از یونانیان باستان بر جای مانده است، هیچ کس را ارضا نمی‌کند. از اینرو ، برای مطالعه بخشی از جو که در آن یونش و گسست مهم است و روی هم رفته بالاتر از ارتفاع حدود 35Km قرار دارد، واژه آیرونومی (نزدیک جو بالا) را بکار می‌برند، در حالی که برخی ، به عنوان نامی فراگیر ، علم (یا علوم) جو را می‌پسندند.

تصویر

نگاه اجمالی

مطالعه و پژوهش درباره تمامی جنبه‌های جو زمین که بطور تفصیلی از سطح زمین تا سطح بالایی جو را در بر می‌گیرد، امروزه تحت عنوان علوم جوی نامیده می‌شود. واژه قدیمی و مصطلحتر هواشناسی مطالعه مطوح پایانی جو را ، که دارای تغییرات دائمی است، شامل می‌شود. بشر از ابتدای خلقت به دلیل تماس نزدیک با طبیعت و مشاهده عینی پدیده‌های جوی همواره نسبت به کشف این پدیده‌ها کنجکاوی نشان داده است. اولین تجربه عینی پدیده‌های جوی شاید مشاهده رعد و برق و آتش گرفتن جنگلها بوده که بعدها به کشف آتش منجر شده است. همچنین اولین کوشش انسان برای تهیه غذا و کشاورزی نیز همراه با دیده بانی هوا بوده است.

هواشناسی شاخه‌ای تخصصی از فیزیک پیشرفته است که از ابزارهای ریاضی پیچیده‌ای بهره می‌گیرد و بر همه علوم فیزیک تکیه‌ای استوار دارد. هواشناسی بیش از همه با نظریه تابش الکترومغناطیسی ، ترمودینامیک ، مکانیک کلاسیک ، فیزیک شاره‌ها ، شیمی فیزیک و نظریه لایه مرزی سر و کار دارد. اگر جو زیرین نیز در آن گنجانده شود، فیزیک خورشید ، طیف شناسی ، فیزیک پلاسما ، یونش ، فیزیک ذرات بنیادی ، پدیده‌های اشعه ایکس ، نور شناخت ، فیزیک پرتوی کیهانی ، پدیده های برانگیزش ، الکترودینامیک ، مگنتوهیدرودینامیک ، انتشار رادیویی و سایر فرآیندهای مربوطه را نیز باید فرا گرفت.

تصویر

تاریخچه

اولین بار ادموند هالی به سال 1688 اسنادی را در زمینه پدیده‌های جوی و نقشه‌های مربوطه به بادهای متواتر در سطح اقیانوسها ، برای بخشی از سطح زمین منتشر می‌کند و در سال 1840 هوری نقشه بادهای اقیانوسها را ترسیم و توان و جهت وزش آنها را مشخص می‌سازد و بدین ترتیب در رفع نیاز دریانوردی گامی برداشته می‌شود.

سیر تحولی و رشد

در اواخر قرن نوزدهم مطالعات جو شناسی در سطح زمین بویژه در زمینه اندازه گیری بارانها توسعه پیدا می‌کند و از سال 1916 مطالعه پدیده‌های جوی در زمینه پیش‌بینی هوا شکل می‌یابد و این بررسیها بر مبنای ویژگیهای سیستماتیک صورت می‌گیرد. در سالهای بعد ، توسعه هوانوردی پیش بینیهای دقیقتری را در وسعت گسترده‌ای ایجاب می‌کند و آگاهی هوانوردان از حالات احتمالی آزمایشهای مربوط به هوا در ناحیه معین و برای یک لحظه از زمان الزامی می‌نماید و به منظور رفع همین نیاز هست که در پاره‌ای از نقاط دنیا سازمانهای هواشناسی بوجود می‌آید.





تصویر




به تدریج به موازات توسعه شناساییهای علمی ، برای بهره گیری منطقی از منابع اقتصادی زمین به آگاهیهای بیشتری از پدیده‌های جوی احساس نیز می‌شود، به گونه‌ای که برای شناخت قدرت هیدرولیکی ناهمواریها و "نفت سفید" کوهستانها به عنوان منبع زایش آبها ، تعیین حجم متوسط آب رودخانه‌ها در رابطه با نوسان میزان بارندگی سالانه حوضه‌ها مورد توجه قرار می‌گیرد. همچنین پیشرفت علم کشاورزی به منظور کاشت و برداشت محصولات کشاورزی ، مهندسین زراعی را به کسب اطلاعاتی در زمینه آب و هواشناسی وا‌ می‌دارد و همین نیاز به عنوان انگیزه دیگری در پیشرفت تحقیقات کلیماتولوژی موثر می‌افتد.

شاخه‌های هواشناسی


نوشته شده در تاريخ 89/09/27 توسط  محمدصادق
در شیمی معدنی ترکیباتی وجود دارند که در آن اتم مرکزی حداقل با یک پیوند داتیو با گروه اتمهای اطراف خود (لیگندها) ارتباط برقرار می‌کند. در‌ این ترکیبات اتم مرکزی گیرنده جفت الکترون می‌باشد، چنین ترکیباتی را کمپلکس یا ترکیبات کئوردیناسیونی می‌نامند. اتم مرکزی در این ترکیبات معمولاً دارای یک حفره الکترونی می‌باشد که می‌تواند الکترونهای جفت نشده لیگند را بگیرد و یک پیوند کووالانسی-کئوردیناسیونی ، (داتیو) تشکیل دهد.

کمپلکسهایی که در آنها انتقال الکترون می‌تواند در تشکیل پیوند نقش بسزایی داشته باشد کمپلکسهای دهنده - گیرنده می‌نامند. اکثر عناصر جدول تناوبی اعم از فلزات گروه اصلی ، فلزات گروه واسطه و غیر فلزات می‌توانند کمپلکس تشکیل دهند.

تاریخچه

تا سال 1913 ساختمان کمپلکسها مشخص نشده بود اما در این سال آلفرد ورنر پدر شیمی کوئوردیناسیونی نظر خود را در مورد ساختمان کمپلکسها اعلام کرد و این در حالی بود که هنوز ساختمان الکترونی اتم مشخص نشده بود. قبل از ورنر دانشمندی به نام یورگنسون برای برخی از کمپلکسها ساختارهایی تعیین کرده بود که با اعلام نظریه ورنر اشتباه بودن این ساختارها مشخص شد.

ورنر به دلیل مطالعاتی که روی کمپلکسهای هشت وجهی ، مسطح مربعی و چهار وجهی انجام داد و بنیانگذار شیمی کوئوردیناسیون شد، جایزه نوبل شیمی را در سال 1913 دریافت کرد.

نظریه ورنر

هر اتم دارای دو ظرفیت می‌باشد. ظرفیت اصلی و ظرفیت والانس فرعی ، بنابراین لزومی ندارد که فقط به اندازه ظرفیت اصلی یک اتم ، اتمهای دیگر به آن وصل شود بلکه بعد از پر شدن ظرفیت اصلی که فضای کئوردیناسیونی داخلی را تشکیل می‌دهد. اتمها می‌توانند به ظرفیت فرعی یا فضای کئوردیناسیون خارجی که نشانگر عدد اکسیداسیون اتم مرکزی است، وارد شوند.

تا قبل از اینکه ورنر این نظریه را اعلام کند دانشمندان در تعیین ساختمان ترکیباتی مانند اختلاف نظر داشتند. این ترکیب یک ترکیب یونی است و کلرها در آب به راحتی یونیزه می‌شود. اما ها به آسانی جدا نمی‌شوند مگر اینکه ترکیب در اسید قوی جوشانده شود. یورگنسون اولین ساختمان را بر این ترکیب به صورت زیر پیشنهاد کرد.
عکس پیدا نشد

اما ورنر این ترکیب را یک یک ساختمان هشت وجهی پیشنهاد کرد که اتم کبالت در مرکز و ها با شش پیوند هم اندازه در اطراف و یونهای کلر هم در فضای کئوردیناسیون خارجی حضور داشتند.

لیگند

دسته‌ای از اتمها که باهم هستند و یکی از اتمها می‌تواند جفت الکترونش را در اختیار اتم دیگر قرار دهد. لیگند ممکن است یک ترکیب خنثی یا یک آنیون باشد.

انواع کمپلکس

کمپلکسهای ورنر یا کلاسیک

ترکیبات کوئوردیناسیونی که در آنها فلز مرکزی با حالت اکسایش +2 یا بالاتر توسط اتمهای غیرکربن کئوردینه شده‌اند کمپلکسهای ورنر یا کلاسیک نامیده می‌شوند (این نامگذاری به خاطر مطالعات ورنر در شیمی کئوردیناسیون انجام شده است.).

کمپلکسهای آلی فلزی

در این کمپلکسها فلز مستقیماً با کربن پیوند تشکیل می‌دهد. در این ترکیبات فلز در حالت اکسایش پایین خود مانند 2- و 1- و 0 و 1+ می‌باشد.

کمپلکسهای کلاستر یا خوشه‌ای

در این ترکیبات اتم مرکزی گروهی از فلزات می‌باشند که باهم پیوند تشکیل داده‌اند. مانند که اتمهای آهن در گوشه‌های یک مثلث جای گرفته‌اند و گروههای کربونیل در اطراف آنها پیوند تشکیل می‌دهند.

عدد کوئوردیناسیون

تعداد اتمهایی که اتم مرکزی را در اولین قشر کئوردیناسیون ، کئوردینه کرده‌اند عدد کئوردیناسیون می‌گویند. عدد کئوردیناسیون هر ترکیب مشخص کننده ساختمان آن ترکیب می‌باشد. رایج‌ترین عدد کئوردیناسیون در کمپلکسها عدد 6 و بعد از آن 4 می‌باشد.

عوامل مؤثر درتشکیل کمپلکس

  1. لیگند مهمترین عامل در تشکیل کمپلکس می‌باشد. نوع لیگند ، اندازه لیگند و تعداد لیگند در پایداری کمپلکس‌ها تأثیر فراوان دارد.

  2. عامل دوم در تشکیل کمپلکس نوع فلز مرکزی می‌باشد.

انواع لیگند

  • لیگندهای یک دندانه:فقط دارای یک اتم کئوردینه کننده است. هالیدها ، نیترات ، انواع آمینها ، سولفات و از مهمترین لیگندهای یک دندانه هستند.

  • لیگندهای چند دندانه:این لیگندها دارای یک یا چند اتم کئوردینه کننده هستند. این لیگندها کمپلکس‌های پایدارتری ایجاد می‌کنند و به کی سیلت یا شلاته کننده‌ها معروفند. یک کمپلکس می‌تواند به صورت آنیونی ، کاتیونی یا خنثی باشد

نوشته شده در تاريخ 89/09/27 توسط  محمدصادق
سلول واحد ساختمان و کار اساسی موجودات زنده است. درست همان گونه که اتم واحد ساختمانی و کار اساسی ساختمانهای مولکولی است. سلول شناسی (Cytology) شاخه‌ای از زیست شناسی سلولی است که از ساختمان ، عمل ، تکثیر و پیدایش سلولها بحث می‌کند.

دید کلی

سلولها واحدهای ساختمانی و عملی تمامی موجودات زنده را تشکیل می‌دهند. کوچکترین موجودات تک سلولی و میکروسکوپی بوده، در حالی که موجودات بزرگتر ، پرسلولی هستند. برای مثال بدن انسان دارای حداقل 1014 سلول می‌باشد. موجودات تک سلولی شامل انوع متعدد بوده و در هر محیطی ، از مناطق سردسیر تا مناطق گرمسیر در داخل بدن موجودات بزرگتر وجود دارند. موجودات پر سلولی متشکل از انواع مختلف و متعدد سلولها بوده که هر کدام دارای شکل و عمل متفاوت و فعالیت اختصاصی هستند. بدون توجه به اندازه و پیچیدگی موجودات پرسلولی ، هر کدام از سلولهای آنها تا حدودی منحصر و مستقل هستند.

علی‌رغم تفاوتهای متعدد در بین انواع مختلف ، سلولها دارای خصوصیات ساختمانی مشترکی هستند. غشای پلاسمایی محیط سلول را معین نموده و محتویات آن را از محیط اطراف جدا می‌کند. ماده داخلی سلول که توسط غشای پلاسمایی احاطه شده است، به نام سیتوپلاسم ، از محلول آبی ، به نام سیتوزول تشکیل شده است که در ان انواع مختلفی از ذرات نامحلول به شکل معلق وجود دارند. تمامی سلولهای زنده حداقل برای قسمتی از عمر خود ، دارای یک هسته (Nucleus) یا شبه هسته بنام نوکلوئید می‌باشند که در داخل آن ژنوم (سری کامل ژنها که از روی DNA تشکیل شده است) ذخیره و همانندسازی می‌گردد. سلولهای دارای پوشش هسته‌ای را یوکاریوت و سلولهای فاقد پوشش هسته‌ای را پروکاریوت گویند.



img/daneshnameh_up/1/19/b.18.jpg

تاریخچه علم سلول شناسی

توجه زیست شناسان از اواخر قرن بیستم و به خصوص از 1940 به بعد ، با ابداع و بکار گرفتن فنون بیوشیمیایی به شناخت اعمال پیچیده سولی معطوف گردید. مطالعات شارگاف (1947) ، ویلکینز (1950) و کوری (1951) بر روی ساختار مولکولی DNA منجر به کشف ساختمان مولکولی DNA توسط واتسون و کریک در سال (1953) گردید.

از جمله کارهای درخشان دهه‌های 1950 تا 1970 در زمینه بیوسنتز اسیدهای هسته‌ای و پروتئینها ، می‌توان از کارهای تحقیقاتی مسلسون و استال بر روی همانند سازی DNA ، کریک بر روی رمز وراثتی ، کورنبرگ بر روی آنزیمهای بیوسنتز DNA نام برد. بطور کلی تا سال 1940 مطالعه سلول جنبه توصیفی داشته است (Cytology) و تنها پس از این زمان است که سلول شناسی جای خود را به زیست شناسی سلولی (Cell biology) داده است.

ابعاد سلولی

اکثر سلولها میکروسکوپی بوده و با چشم غیر مسلح دیده نمی‌شوند. سلولهای حیوانی و سلولهای گیاهی ، دارای قطری حدود 5 تا 100 میکرومتر بوده و بسیاری از باکتریها تنها 1 تا 2 میکرومتر طول دارند. چه چیزی ابعاد سلولی را محدود می‌نماید؟ حداقل اندازه سلول احتمالا توسط حداقل تعداد هر نوع بیومولکول مورد نیاز سلول تعیین می‌گردد.

حد بالای اندازه سلول احتمالا توسط میزان انتشار مولکولهای حل شده در سیستمهای آبی تنظیم می‌گردد. یک سلول باکتری که برای تولید انرژی وابسته به واکنشهای مصرف اکسیژن است، می‌بایست اکسیژن مولکولی را از محیط اطراف ، از طریق انتشار از غشا دریافت کند. این سلول باید نسبت سطح به حجم بیشتری داشته باشد تا بتواند به راحتی اکسیژن را جذب کند.

شکل یک سلول نیز می‌تواند به جبران اندازه بزرگ آن کمک نماید. بسیاری از سلولهای بزرگ ، علی‌رغم شکل تقریبا کروی دارای سطوح شدیدا پیچیده‌ای هستند که این امر سبب ایجاد سطح بیشتری برای همان حجم شده و برداشت مواد غذایی و دفع مواد زاید به محیط اطراف را تسهیل می‌نماید. مانند سلولهای عصبی یا نرونها که به شکل ستاره یا شدیدا منشعب هستند.



تصویر

کاربرد سلولها و بافتها در مطالعات بیوشیمیایی

از آنجایی که تمامی سلولها از سلولهای اجدادی یکسانی ایجاد شده‌اند، دارای شباهتهای پایه‌ای خاصی هستند. مطالعه دقیق بیوشیمیایی تنها چند نوع سلول با وجود تفاوت در جزئیات بیوشیمیایی و ظاهر سطحی آنها ، کلیاتی را مشخص می‌کند که در مورد تمامی سلولها و موجودات کاربرد دارد. بطور مطلوب یک محقق مطالعه خود را با جداسازی آنزیمها و سایر اجزا سلولی آغاز نموده و برای این منظور از یک منبع غنی و یکدست استفاده می‌نماید. استفاده از منبع یکنواختی از یک آنزیم یا یک اسید نوکلئیک که در آن تمامی سلولها از نظر بیوشیمیایی و ژنتیکی یکسان هستند، هیچ شکی را در مورد نوع سلول بکار رفته برای تهیه جزء خالص شده ، باقی نمی‌گذارد.

بعضی بافتهای حیوانات آزمایشگاهی نظیر کبد موش ، مغز خوک و عضله خرگوش ، علی‌رغم یکسان نبودن تمامی سلولها ، منبع غنی مشابهی می‌باشند. بعضی از سلولهای حیوانی و گیاهی نیز در کشت سلولی تکثیر یافته و تعداد مناسبی از سلولهای یکسان (کلون شده) ایجاد می‌نمایند که برای بررسی بیوشیمیایی ، بکار می‌روند.

تکامل و ساختمان سلولهای پروکاریوتی

اولین سلولهای زنده ، پروکاریوتهای بی‌هوازی بودند. این سلولها 3.5 بیلیون سال قبل ظاهر شدند که در آن زمان اتمسفر فاقد اکسیژن بود. با گذشت زمان ، تکامل بیولوژیک باعث شد تا سلولها بتوانند فتوسنتز را انجام داده و اکسیژن را به عنوان یک محصول فرعی تولید کنند. با تجمع اکسیژن ، سلولهای پروکاریوتی قادر به انجام اکسیداسیون هوازی مواد سوختی شدند. دو گروه اصلی پروکاریوتها شامل یوباکتریها و آراکئی باکتریها در ابتدای دوره تکاملی جدا شدند. پوشش سلولی بعضی از انواع باکتریها شامل لایه‌هایی در خارج غشای پلاسمایی است که سبب سختی و محافظت می‌گردند.

بعضی از باکتریها دارای فلاژل بوده و برای حرکت به سوی جلو از آن استفاده می‌کنند. سیتوپلاسم باکتریها فاقد اندامکهای متصل به غشا بوده، ولی دارای ریبوزومها و گرانولهایی از مواد سوختی ذخیره شده و همچنین نوکلوئید هستند که DNA سلولی در آن قرار گرفته است. بعضی از باکتریهای فتوسنتتیک دارای غشاهای داخل سلولی وسیعی هستند که در آنها رنگدانه‌های تسخیر کننده نور وجود دارند.

تکامل و ساختمان سلولهای یوکاریوتی

حدود 1.5 بیلیون سال قبل ، سلولهای یوکاریوتی ظاهر شدند. این سلولها از پروکاریوتها بزرگتر بودند و ماده ژنتیکی آنها پیچیده‌تر بود. این سلولهای اولیه ارتباطات همزیستی با پروکاریوتها پیدا نمودند که در داخل سیتوپلاسم آنها زندگی می‌کردند. میتوکندریها و کلروپلاستهای امروزی از درون این همزیستهای اولیه مشتق شده‌اند. میتوکندریها و کلروپلاستها ، اندامکهای داخل سلولی هستند که توسط یک غشا دو لایه احاطه شده‌اند. این اندامکها محلهای ‌اصلی سنتز ATP در سلولهای یوکاریوتی هوازی هستند. کلروپلاستها تنها در موجودات فتوسنتتیک وجود دارند.

سلولهای یوکاریوتی امروزی دارای یک سیستم پیچیده غشاهای داخل سلولی هستند. این سیستم غشایی داخلی شامل پوشش هسته ، شبکه آندوپلاسمی صاف و خشن ، کمپلکس گلژی ، وزیکولهای ترشحی ، لیزوزومها و آندوزومها می‌باشند. ماده ژنتیکی موجود در سلولهای یوکاریوتی در داخل کروموزومها ، کمپلکسهای شدیدا منظم DNA و پروتئینهای هیستونی ، سازماندهی شده است. ویروسها انگل سلولهای زنده هستند و مسئول بسیاری از بیماریهای جدی انسانی می‌باشند.

آینده بحث

بطور کلی امروزه پذیرفته شده است که سلول واحد زندگی ، واحد ریخت شناسی و کار است و اساسا با امکان تولید مثل خود (خود زایشی) مشخص می‌شود. در عین حال ساختمان متداول سلولی ، خاص هم موجودات زنده نیست و باکتریها ، سیانوباکترها و اکتینومیست‌ها نوع دومی از ساختمان سلولی را نشان می‌دهند.

نوشته شده در تاريخ 89/09/27 توسط  محمدصادق
بافت شناسی (histology) قسمتی از علوم تشریحی است که ساختمان میکروسکوپی ارگانهای مختلف بدن را مورد بحث و بررسی قرار می‌دهد.

مقدمه

هر بافت مجموعه‌ای از سلولهای تخصص یافته می‌باشد که کار معینی را انجام می‌دهند. بافتهای بدن به چهار دسته اصلی به نامهای پوششی ، همبند یا پیوندی ، عضلانی و عصبی تقسیم می‌شوند. بافتهای غضروفی ، استخوانی و خونی بافتهای همبند تخصص یافته محسوب می‌شوند. یادگیری جزئیات ساختمانی ارگانها و اعضای مختلف برای فهم فعالیت فیزیولوژیک و تغییرات پاتولوژیک آنها ضروری است. بنابراین بافت شناسی نه تنها به عنوان علمی مستقل نمی‌تواند مطرح گردد بلکه بهتر است مرتبط با سایر شاخه‌های علم پزشکی و به عنوان یکی از پایه‌های اصلی علوم پایه پزشکی مورد توجه قرار گیرد. ابزار کار اصلی در زمینه بافت شناسی انواع میکروسکوپها می‌باشد.



تصویر

بافت پوششی

بافت پوششی بیرونی‌ترین و درونی‌ترین سطح هر اندام را می‌پوشاند. مانند آندوتلیوم (پوشش درونی رگهای خونی) یا مزوتلیوم (پوشش سطح بیرونی قلب ، شش و دستگاه گوارش). این نوع بافت ممکن است از اکتودرم ، مزودرم و یا آندودرم منشا بگیرد. برای مثال پوشش پوست اکتودرمی است ولی پوشش رگهای خونی مزودرمی است. بافت پوششی اندام ممکن است دارای برجستگی (جوانه چشایی) ، چین خوردگی (کریپتهای روده) ، و یا پرز (روده کوچک) باشد این ساختارها سطح اندامهای مربوطه را افزایش می‌دهند.

بافتهای پوششی در بدن وظایف متعددی دارند بافت پوششی بر روی بخش غیر سلولی قرار گرفته است که باعث ارتباط پوشش اندام با بافتهای زیرین می‌شود این قسمت غشای پایه نام دارد که در اغلب اندامها دیده می‌شود. به استثنای سینوزوئیدها و مویرگهای لنفی که غشای پایه ممتد ندارند. غشای پایه شامل گلیکوپروتئینهایی به نام لامینین و انتاکتین. رشته کلاژن IV و رشته‌های شبه کلاژن (شبکه ای) است. پروتئینی به نام هپارین سولفات و فیبرونکتین از دیگر ترکیبات غشای پایه است.

ساختار انواع بافتهای پوششی

بافت پوششی به دو شکل ساده (تک لایه‌ای) و مطبق (چند لایه‌ای) در بدن وجود دارد.
  • بافت پوششی ساده: این نوع بافت فقط دارای یک لایه سلولی است که بر روی غشای پایه قرار گرفته است این بافت سه نوع است. بافت پوششی ساده مکعبی ، بافت پوششی ساده استوانه‌ای و بافت پوششی ساده سنگفرشی از انواع این بافتها هستند.
  • بافت پوششی مطبق

وظایف بافت پوششی

بافت پوششی به عنوان محافظ بدن و ترشح مواد مانند غدد ترشحی درون ریز و برون ریز و دفع مواد مانند بافت پوششی کلیه و جذب مواد مانند بافت پوششی روده و دریافت حس مانند مخاط بینی و نرم کردن مانند مخاط روده و تکثیر مانند بیضه و تخمدان نقش دارد.



تصویر

بافت پیوندی

چون این نوع بافت دارای سلول و ماده زمینه‌ای با ویژگیهای خاصی است لذا قادر به انجام کارهایی است که با نام آن متناسب است. این نوع بافت ، ارتباط بین بافتها را برقرار می‌سازد ضمن اینکه به دلیل وجود سلولهایی مانند هیستوسیت ، پلاسموسیت ، ماست سل و انواع سلولهای خونی قادر به حفاظت و نگهداری بدن نیز هست. در ضمن سلولهایی نظیر فیبروبلاست و مزانشیم تمایز نیافته دارد که در مواقع لزوم کار ترمیم را انجام می‌دهند.

انواع بافت پیوندی

خون ، غضروف و استخوان هر سه خود نوعی بافت پیوندی هستند هر چند که خون ، سیال غضروف نیمه جامد و استخوان سخت است. کار خون دفاع و تغذیه اندامها و اکسیژن رسانی است و کمبود یا افزایش آن باعث ایجاد بیماری می‌شود. با وجود اینکه گویچه‌های خون در هر لحظه از بین می‌روند ولی بخشهایی در بدن وجود دارند که اعمال خونسازی را انجام می‌دهند کلیه اعمال خون سازی با تغییر سلول مادر یعنی هموسیتوبلاست انجام می‌گیرد.

غضروف بافتی قابل ترمیم است وممکن است نرم ، نظیر غضروف شفاف قابل انعطاف نظیر غضروف ارتجاعی و سخت مانند غضروف رشته‌ای باشد. استخوان یکی از سخت‌ترین انواع بافت پیوندی است. سختی آن بیشتر به یک ماده پلاستیکی شباهت دارد تا به یک سنگ. زیرا کاهش کلسیم آن را نرم می‌کند و کاتیونهایی نظیر سرب ، استرانسیم و رادیم جانشین کلسیم می‌شوند و سختی استخوان را از بین می‌برند. استخوان نظیر دیگر بافتهای پیوندی ، شامل ماده زمینه‌ای و سلولهای بافت استخوانی است. ماده زمینه‌ای به دو صورت بی‌شکل و شکل‌دار وجود دارد.



تصویر

بافت ماهیچه‌ای

سه نوع بافت ماهیچه‌ای صاف ، مخطط و ماهیچه قلب وجود دارد ماهیچه قلب وجود دارد. ماهیچه صاف دوکی شکل است و فیلامنتهای آن اکتین ، میوزین و دسمین هستند. علاوه بر تفاوتهایی که در ترکیب شیمیایی فیلامنتها وجود دارد طرز قرار گرفتن فیلامنتها متفاوت است. ماهیچه صاف از نظر عملکرد غیر ارادی است و فعالیت آن را عوامل خارجی کنترل می‌کنند در حالی که عملکرد ماهیچه مخطط ارادی و قابل کنترل است.

هر ماهیچه از چند رشته یا فیبر ساخته شده است که واحد ساختاری ماهیچه‌ها مشابه سلولها در بافتهای دیگر بدن است. هر فیبر ، علاوه بر ویژگیهای سلول بدن ، فیبریل نیز دارد. فیبریلها از فیلامنتها ساخته شده‌اند. ماهیچه قلب تشابه بسیار با ماهیچه مخطط دارد، تفاوتهایی نیز در ساختار آن مشاهده شده است برای مثال سارکولم در دو ماهیچه با یکدیگر تفاوت دارند و به جای تریاد در ماهیچه مخطط ، دیاد در ماهیچه قلب وجود دارد. وجود صفحات ارتباطی تفاوت دیگر ماهیچه قلب و ماهیچه مخطط است.

بافت عصبی

منشا بافت عصبی اکتودرم است و سلولهایی به نام نوروبلاست آن را می‌سازند. واحد ساختاری بافت عصبی نورون است که تحریکات را به تنهایی از راه سیناپس با نورونهای دیگر هدایت می‌کند انواع نورون وجود دارد و چهار نوع نورون یک قطبی ، دو قطبی ، چند قطبی و نورون پورکنژ در بدن وجود دارد. از تنه نورون زوایدی به نام دندریت و اکسون خارج می‌شوند که بر روی آنها غلافهای میلین و شوان قرار دارند.

بر حسب وجود یا عدم وجود این دو غلاف ، چهار نوع رشته عصبی در بدن یافت می‌شود و همچنین بر حسب طول آکسون دو نوع رشته عصبی وجود دارد. سیناپسها نیز انواع مختلف دارند برخی آکسوسوماتیک و بعضی آکسودندریتیک هستند. بافت عصبی نیز دارای بافتهای پشتیبان است که منشا آنها در اعصاب مرکزی از لوله عصبی ودر اعصاب محیطی از هلال عصبی است. نوروگلیها یا بافتهای پشتیبان از طریق عمل تبادل مواد ، ماکروفاژ و تصفیه بافت عصبی را حفظ و نگهداری می‌کنند.

نوشته شده در تاريخ 89/09/26 توسط  محمدصادق
مهندسی ژنتیک ، شامل تکنیکهایی مانند جداسازی ، خالص سازی ، وارد کردن و تظاهر یک ژن خاص در یک میزبان می‌باشد که نهایتا منجر به بروز یک صفت خاص و یا یک محصول مورد نظر می‌شود.

دید کلی

کاربردهای مهندسی ژنتیک تقریبا نامحدود به نظر می‌رسد. این علم کاربردهای زیادی در علوم پایه و همچنین تولیدات صنعتی ، کشاورزی و علوم پزشکی دارد. در زمینه علوم پایه ، بررسیهایی مانند مکانیزمهای همانند سازی DNA و بیان ژنها در پروکاریوتها ، یوکاریوتها و ویروسها و همچنین چگونگی ساخته شدن و تغییرات پروتئینهای داخلی سلول و همچنین مکانیزم ایجاد سرطان از جمله کاربردهای مهندسی ژنتیک است. در زمینه کشاورزی که زمینه بسیاری از کاربردهای مهندسی ژنتیک بوده است، تولید گیاهان مقاوم به آفات گیاهی و خشکی ، تولید گیاهان پرمحصول و تولید گاوهای دارای شیر و گوشت بیشتر ، را می‌توان نام برد. در زمینه کاربردهای انسانی ، تشخیص بیماریهای ارثی ، تولید انسولین انسانی ، تولید هورمون رشد انسان و ... را می‌توان نام برد.

img/daneshnameh_up/8/85/16.jpg

تاریخچه

اهمیت بعضی از اصول علمی ، در زمان کشف آنها مشخص نمی‌شود، بلکه پس از مدت زمانی که می‌گذرد ارزش آنها معلوم می‌شود. یکی از مثالهای روشن این مساله کشف ساختمان سه بعدی DNA بوسیله واتسون و کریک در سال 1953 بود. این ساختمان نسبتا ساده باعث شد تا دانشمندان سیستمهای مختلف ژنتیکی را بررسی کنند. اما مطلب به همین جا ، ختم نشد و دانشمندان مختلف سعی کردند که از این اطلاعات استفاده نمایند. هدف آنها نیز بیان ساده‌ای داشت. آنها خواستند تا یک DNA را از یک موجود بگیرند و در موجود دیگر وارد نمایند تا اثرات آن ژن در موجود ثانویه بروز کند.

این علم نوین که به تدریج جای خود را در بین علوم دیگر پیدا کرد، با عناوین چون زیست مولکولی ، مهندسی ژنتیک و نهایتا DNA نوترکیب (Recombinant DNA) نامیده می‌شود. مثالی معروف از کارهای مهندسی ژنتیک تولید یک نوع باکتری اشرشیاکلی (E.Coli) است که قادر است انسولین انسانی بسازد. یا تولید گیاهان مقاوم به شوری و خشکی.

مراحل مهندسی ژنتیک

  • انتخاب ژن مورد نظر
  • جداسازی ژن مورد نظر
  • وارد کردن ژن مورد نظر در حامل
  • تکثیر ژن در میزبان مناسب
  • انتقال حامل ژن به سلول هدف
  • تکثیر سلول هدف
  • تولید انبوه محصول یا ایجاد صفت مورد نظر

تولید DNA نوترکیب با استفاده از آنزیمهای محدود‌الاثر(Restriction)

  • گروهی از آنزیم های محدود‌الاثر هنگام برش ، توالیهای مورد شناسایی‌شان را بطور نامتقارن می‌شکنند، در نتیجه در انتهای قطعات DNA حاصله رشته‌های تکی با حدود 4 نوکلئوتید بوجود می‌آید که به این انتهای تک رشته‌ای ، انتهای چسبنده (Sticky end) می‌گویند. یکی از آنزیمها ECORI نام دارد که باعث ایجاد قطعاتی می‌شود که در انتهای خود ، چسبنده می‌باشند.

  • حال فرض کنید که دو قطعه متفاوت DNA بوسیله یک آنزیم محدودالاثر یکسانی برش داده شده‌اند، اگر قطعات حاصل از این برش با هم مخلوط شوند و شرایط مناسب فراهم شود انتهاهای چسبناک که مکمل هم می‌باشند بهم متصل می‌شوند. سپس بوسیله آنزیم DNA لیگاز این رشته‌ها به صورت کووالانسی بهم متصل می‌شوند.

  • هدف اصلی برش DNA در مهندسی ژنتیک ، اتصال دو قطعه DNA به یکدیگر می‌باشد. ولی هنگام اتصال قطعات DNA ممکن است بجای اینکه قطعات DNA بهم متصل شوند، دو سر یک مولکول DNA بار دیگر بهم بچسبند و در نتیجه نوترکیب صورت نگیرد. برای جلوگیری از این کار از آنزیم فسفاتاز قلیایی استفاده می‌کنند. به این صورت که پس از برش دادن حامل بوسیله آنزیم محدودالاثر فسفاتاز را به محیط واکنش می‌افزایند و در نتیجه فسفات انتهای 5 مولکول DNA در هر دو طرف جدا می‌شود و امکان اتصال دو سر مولکول حامل ، بدون DNA تازه ، به یکدیگر از بین می‌رود.

سیستمهای کلون کردن ژن

کلون کردن یک ژن خاص مهمترین مرحله مهندسی ژنتیک است. هدف از کلون کردن ژن به دست آوردن مقادیر زیادی از ژنهای خاص به صورت خالص می‌باشد. هدف اصلی کلون کردن ژن ، انتقال ژن مورد نظر از داخل یک ژنوم بزرگ و پیچیده به داخل یک حامل ساده و کوچک تکثیر آن است.

مراحل کلون کردن ژن

  • جداسازی و قطعه قطعه کردن منبع DNA: منبع DNA می‌تواند، ژنوم کامل یک موجود باشد که در این صورت، باید آن را بوسیله آنزیم محدودالاثر برش داد و قطعات حاصله را برای کلون کردن بکار برد.

  • اتصال به یک حامل کلون (Cloning Vector): حاملهای کلون ، قطعات ژنتیکی کوچکی هستند که بطور مستقل توانایی تکثیر دارند و دارای محل برش بوسیله آنزیمهای محدودالاثر می‌باشند، ولی این برش نباید در محل همانند سازی این حاملها باشد.

  • ورود به داخل میزبان:DNA نوترکیب حاصل به روشهای مختلف وارد باکتری یا میزبان مورد نظر می‌شود.

  • شناسایی و جداسازی کلون حاوی ژن مورد نظر: این مرحله شامل جداسازی میزبانهایی است که ژن مورد نظر بوسیله حامل وارد آنها شده و به نحو موثر بیان می‌شود.

  • تولید تعداد زیاد سلولها و یا باکتریهای حاوی ژن: این کار به منظور جداسازی و بررسی ژن مورد نظر ، انجام می‌گیرد.

حاملهای کلون (Cloning Vector)

پلاسمیدها

قطعات DNA حلقوی هستند. که در داخل سیتوپلاسم باکتریها و جدا از کروموزوم آنها قرار دارند و بطور مستقل تکثیر می‌شوند. پلاسمیدها ، خصوصیات مفیدی برای استفاده به عنوان حامل دارند مانند: اندازه کوچک ، DNA حلقوی ، همانند سازی مستقل ، تکثیر زیاد و شاخصهای مفید دیگر مانند دارا بودن ژنهای مقاومت به آنتی بیوتیک که جداسازی کلنی‌های حاوی پلاسمید را راحتتر می‌کند.

باکتریوفاژها (ویروس باکتری)

  • ویروسها به خاطر داشتن پروتئینهای خاص ، نفوذ بسیار موثر و اختصاصی را به داخل سلولهای میزبان انجام می‌دهند.
  • بعضی ویروسها در قسمتی از چرخه تکثیر خود ، نفوذ پایداری به داخل ژنوم میزبان دارند که این باعث پایداری بیان ژن در داخل سلول میزبان می‌شود.
  • ویروسها دارای پروموتورهای خاصی هستند که بوسیله سلولهای میزبانی شناخته می‌شوند و این باعث بیان مناسب ژنهای کلون شده می‌شود.

کازمیدها (Cosmids)

کازمیدها در حقیقت قطعات حاصل از دو انتهای ژنوم از دو انتهای ژنوم باکتریوفاژها لامبدا قرار بگیرند و در نتیجه وارد سلول Ecoli (باکتری اشرشیاکلی)شوند. در داخل سلول E.Coli این DNA به صورت حلقوی در آمده و مانند یک پلاسمید عمل می کند.

فاسمیدها

یکی دیگر از حامل‌های DNA نوترکیب هستند که ترکیبی از ژنوم باکتریوفاژ و پلاسمیدها هستند.

انتخاب میزبان مناسب

میزبان مورد نظر باید خصوصیاتی از قبیل پایداری ژنتیکی ، ژنوم کاملا شناخته شده مشخصات فیزیولوژیک معلوم ، توانایی پذیرش DNA خارجی ، داشتن یک شاخص خاص برای شناسایی در مواقع لزوم و ... را داشته باشد. یکی از شناخته شده ترین میزبانهای مورد استفاده باکتری E.Coli است. هنگام انجام کارهای ژنتیکی باید با مطالعاتی کافی یک سیستم حامل میزبان مناسب را انتخاب کرد و بکار برد. باسیلوس سوبتلیس (B.Subtilis) در مواردی که هدف از کلون کردن تولید یک پروتئین خالص می‌باشد، بر E.Coli ترجیح دارد. زیرا خصوصیات تخمیری این باکتری برای تولیدات صنعتی مناسب تر است.

روشهای وارد کردن حاملها به داخل میزبان

ویروسها و باکتریوفاژها

برای ویروسها و باکتریوفاژها و همچنین DNA نوترکیب که در داخل کپسید ویروس ها قرار گرفته‌اند (کاسمیدها) روش ورود واضح است و همانند ورود معمولی ویروس ها در سلول های میزبان است.
  • ترانسفورماسیون: برای این کار DNA نوترکیب را با باکتری مجاور می‌کنند. این روش یکی از متداولترین روشهای انتقال است.

  • الکتروپوریشن: در این روش قطعات DNA را در یک محیط دارای بار الکتریکی در مجاورت سلولها قرار می‌دهند. بار الکتریکی باعث ایجاد منافذ ریز در غشای سیتوپلاسمی می‌شود که این خود باعث تسهیل ورود قطعات DNA به داخل سلول می‌گردد.

  • تفنگ ذره‌ای یا تفنگ اسید نوکلئیک: در این روش دقیقا تنگی در مقیاس میکروسکوپی وجود دارد که گلوله آن قطعات DNA می‌باشد و DNA را به داخل سلول ، شلیک می‌کند.

img/daneshnameh_up/0/0a/b.Gen.10.gif

انتخاب کلونهای تغییر یافته

پس از اینکه DNA نوترکیب ساخته شد و در داخل باکتری میزبان ، انتقال داده شد. حال نوبت به انتخاب کلونهای باکتریایی می‌رسد که DNA نوترکیب مورد نظر به داخل آن انتقال یافته و به نحو موثری در داخل آن بیان شود. 3 خصوصیت در بین حاملین مشترک است. قدرت تکثیر در میزبان ، محل ورود ژن خارجی و یک شاخص انتخابی.

شاخصهای انتخابی موجود بر روی حاملها

مقاومت به آنتی بیوتیکها

مقاومت به آنتی بیوتیکها معمولا یا بوسیله آنزیم هایی ایجاد می‌شود که باعث غیر فعال شدن آنتی بیوتیکها می‌شوند و یا با سنتز پروتئینهایی است که به روشهای مختلف باعث ممانعت از اثر آنتی بیوتیکها می‌شوند. هر دو نوع مکانیزم مقاومت فوق بوسیله قطعات ژنتیکی ، کنترل می‌شوند. این قطعات ژنتیکی را می‌توان در حاملها وارد کرد و از آنها به عنوان شاخصهای انتقال موثر استفاده کرد.

نیازهای متابولیزمی

نیازهای متابولیزمی طیف وسیعی از مواد مختلف را شامل می‌شود. برای این کار از گونه‌های خاص از میزبان استفاده می‌شود که تونایی ساختن یک ماده متابولیزمی ضروری از دست داده‌اند، در نتیجه این باکتریها بر روی محیطهای بدون این ماده متابولیزمی رشد ، نخواهد کرد. برای مثال اگر یک باکتری توانایی تولید اسید امینه لوسین را نداشته باشد. بر روی محیط فاقد لوسین رشد نخواهد کرد.

حال اگر ما از حاملی استفاده کنیم که حاوی ژن سنتز لوسین باشد، باکتریهای میزبان حاوی این حاملها بر روی محیط فاقد لوسین رشد خواهند کرد. پس از اینکه کلنی‌های حاوی ژن نوترکیب انتخاب و جدا شدند، این کلنی‌ها را به میزان دلخواه تکثیر می‌دهند و سپس ژن تکثیر شده را برای بررسیهای بعدی استخراج کرده قرار می‌دهند.

حاملهای بیان ژن (Expression Vector)

یک حامل بیان ژن حاصل است که نه تنها می‌توان از آن به عنوان حامل کلون استفاده کرد. بلکه این حامل دارای کی توالی تنظیمی می‌باشد که باعث می‌شود که بیان ژن مورد نظر تحت کنترل مهندسی ژنتیک قرار گیرد. یک حامل بیان ژن خوب باید دارای مشخصات زیرا باشد. هر چه قدر تعداد نسخه‌های یک ژن بیشتر باشد، میزان بیان آنها بیشتر خواهد بود. پلاسمیدها از این نظر مناسب هستند. قدرت آغازگری آن خوب باشد. الگوی خواندن آن مناسب باشد. بطور کلی وظیفه مهندسی ژنتیک ایجاد یک حامل مناسب است که بتوانند بطور موثری به داخل میزبان وارد شود به تعداد همانند سازی کند بطور موثر نسخه برداری شود - بطور موثر ترجمه شود.
نوشته شده در تاريخ 89/09/26 توسط  محمدصادق
میکروبیولوژی (Microbiology) علمی است که درباره میکروارگانیسمها یا جانداران ذره ‌بینی بحث و گفتگو می‌کند. جانداران ذره‌ بینی به کلیه موجوداتی اطلاق می‌شوند که به علت کوچک بودن ابعاد فقط با ذره بین یا میکروسکوپ قابل مشاهده هستند.

دید کلی

تنوع بیولوژیکی در میکروارگانیسمها بیش از سایر موجودات می‌باشد. میکروارگانیسمها موجوداتی هستند که با چشم غیر مسلح مشاهده نمی‌شوند. شکل ، عمل و خصوصیات بیوشیمیایی یا مکانیزم ژنتیکی آنها ، بر اساس محدودیتهای مولکولی بنا شده است. میکروبیولوژی راههای مفیدی را برای شناسایی میکروارگانیسمها فراهم ساخته است. در طبقه بندی موجودات زنده ، ارگانیسمهایی را که حاوی هسته بوده و هسته توسط غشایی احاطه شده است، از پروکاریوتها که DNA آنها بطور فیزیکی از سیتوپلاسم جدا نشده است، مجزا کرده‌اند. بطور کلی میکروبیولوژی درباره ویروسها ، میکروارگانیسمهای پروکاریوتی و میکروارگانیسمهای یوکاریوتی بحث می‌کند.

تاریخچه

علم میکروبیولوژی از سال 1674 هنگامی که آنتوان لوون هوک ، با عدسی شیشه‌ای خود دنیایی از موجودات ریز را در قطره آب برکه مشاهده کرد. در اواخر قرن 17 نظریه تولید خودبخودی مورد بحث قرار گرفت. در این زمان بسیاری از دانشمندان از جمله فرانسیکوردی ، فکر می‌کردند میکروارگانیسمها از مواد غیر زنده ایجاد شده‌اند. در سال 1766 اسپالانزانی نتیجه گرفت که میکروبها از هوای غیرسترون وارد محلولهای غذایی شده و آنها را فاسد می‌کنند. دو ابرمرد دنیای علم که به کنار گذاشتن نظریه خلق‌الساعه کمک شایانی کردند شیمیدان فرانسوی به نام پاستور و پزشک انگلیسی به نام تندال بود. در 100 سال گذشته میکروب شناسان موفق به دریافت چند جایزه نوبل شده‌اند.



عکس پیدا نشد

ویروسها

ویروسها به علت داشتن خصوصیات خاصی با سایر موجودات زنده تفاوت دارند. یک ذره ویروس دارای مولکول اسید نوکلئیک DNA یا RNA بوده که توسط پوشش پروتئینی یا کپسید احاطه شده است. اسید نوکلئیک ویروس برای تکثیر در درون سلول به آنزیمهای سلول میزبان وابسته است. از تجمع اسید نوکلئیک و قطعات پروتئینی که به تازگی سنتز شده‌اند، ذرات کامل ویروسی تشکیل می‌شود که به محیط خارج سلول رها می‌گردند. ویروسها بسیار متنوع بوده و از نظر ساختمان ، تشکیلات ژنوم ، بیان ژنوم ، راههای تکثیر و سرایت باهم تفاوت زیادی دارند. ویروسها قادرند باکتریها ، گیاهان و جانوران را آلوده کنند.

پریونها

برخی کشفیات قابل توجه در سه دهه گذشته منجر به شناسایی خصوصیات مولکولی و ژنتیکی عاملی قابل انتقال به نام عامل بیماری اسکراپی که نوعی بیماری تخریب کننده سیستم عصبی مرکزی در گوسفندان است، شده است. ساختمان پریونها فقط از پروتئین ساخته شده و فاقد اسید نوکلئیک است. بیماریهای ناشی از پریون در انسان به علت اینکه به صورت بیماریهای ژنتیکی و عفونی بروز می‌کند کاملا اختصاصی هستند. بررسی بر روی بیولوژی پریونها ، ضرورتی در تحقیقات پزشکی محسوب می‌شود.



عکس پیدا نشد

باکتریها

باکتریها متنوع‌ترین و مهمترین میکروارگانیسمها هستند. تعداد کمی از آنها در انسان و حیوانات و گیاهان بیماریزا است. بطور کلی بدون فعالیت آنها ، حیات بر روی زمین مختل می‌گردد. بطور یقین یوکاریوتها از موجودات زنده باکتری مانند بوجود آمده‌اند. نظر به اینکه باکتریها ساختمان ساده‌ای داشته و می‌توان به آسانی بسیاری از آنها را در شرایط آزمایشگاه کشت داد و تحت کنترل درآورد، میکروب شناسان مطالعه وسیعی درباره فرایندهای حیاتی آنها انجام داده‌اند. درباره نحوه رشد و مرگ باکتریها ، متابولیسم باکتریها ، ژنتیک باکتریها ، ارتباط آنها با ویروسها و ... مطالعات گسترده‌ای صورت گرفته است.

قارچها

قارچها دسته جداگانه‌ای از یوکاریوتها را تشکیل می‌دهند. این دسته از میکروارگانیسمها همگی هتروتروف بوده و برای رشد و تکثیر به ترکیبات آلی جهت اخذ انرژی و کربن نیاز دارند. قارچها هوازی و یا بیهوازی اختیاری هستند. اکثر قارچها ساپروفیت بوده و در خاک و آب به سر می‌برند و در این نواحی ، بقایای گیاهی و جانوری را تجزیه می‌نمایند. قارچها مانند باکتریها در تجزیه مواد و گردش عناصر در طبیعت دخالت داشته و حائز اهمیت هستند. علم مطالعه قارچهای انگل برای انسان را قارچ شناسی پزشکی گویند. که این انگلها بیماریهای زیادی را بوجود می‌آورند.

پروتوزوئرها

پروتوزوئرها جانداران یوکاریوتیک تک سلولی هستند که به قلمرو آغازیان تعلق دارند. پروتوزوئرها از نظر ساختمان تفاوت بسیاری با یکدیگر دارند. این دسته از جانداران ساکن آب و خاک بوده و از ذرات مواد غذایی و باکتریها تغذیه می‌کنند. عده‌ای از آنها بخشی از فلور طبیعی بدن جانداران را تشکیل می‌دهند. مطالعات این جانداران در محدوده علم میکروبیولوژی قرار دارد.

میکروبیولوژی خاک

خاک یکی از مخازن عمده میکروارگانیسمها محسوب می‌شود. فراوانترین میکروارگانیسمها در خاک ، باکتریها هستند. خاک باغچه در هر گرم محتوی میلیونها باکتری است. در جاهای عمیق تعداد آنها کاهش می‌یابد. قارچها به تعداد کمتر از باکتریها در خاک یافت می‌شوند. شاید مهمترین نقش میکروارگانیسمهای خاک ، شرکت آنها در چرخه‌های بیو- ژئوشیمیایی است که به گردش برخی عناصر شیمیایی در طبیعت کمک کرده و آنها را قابل مصرف می‌سازد. میکروبیولوژیستها در این زمینه تحقیقات زیادی انجام داده‌اند.

میکروبیولوژی آب

در میکروبیولوژی آب ، میکروارگانیسمها و فعالیت آنها در آبهای طبیعی نظیر دریاچه‌ها ، برکه‌ها ، رودخانه‌ها و دریاها مورد مطالعه قرار می‌گیرد. و میکروارگانیسمهای مفید و مضر برای انسان و سایر جانداران شناسایی می‌شوند.

میکروبیولوژی مواد غذایی

میکروارگانیسمها تغییرات مطلوب و نامطلوب در مواد غذایی پدید می‌آورند. و از طرف دیگر تهیه بسیاری از فرآورده‌های غذایی بدون کمک میکروارگانیسمها ، امکان‌پذیر نیست. مانند کلم شور ، زیتون رسیده و پنیر. اسیدهای حاصل توسط میکروارگانیسمها و اضافه کردن آنها به مواد غذیی مانند خیار شور آنها را از گزند میکروارگانیسمهای نامطلوب حفظ می‌کند. این بخش از میکروبیولوژی ، امروزه کاربرد زیادی دارد.



img/daneshnameh_up/9/9e/b.Mic.15.gif

عوامل ضد میکروبی

مواد دارویی موادی هستند که برای درمان بیماریهای عفونی یا جلوگیری از وقوع بیماری بکار می‌روند . این مواد معمولا از باکتریها و قارچها بدست می‌آیند و اخیرا برخی از آنها را در کارخانجات می‌سازند. از مواد شیمیایی هنگامی می‌توان برای درمان بیماریهای عفونی استفاده کرد که دارای اثر سمی انتخابی باشند. یعنی ضمن متوقف کردن رشد یا نابودی عامل مولد بیماری ، به سلول میزبان آسیبی نرسانند. علاوه بر سمیت انتخابی ، داروها باید بتوانند به داخل بافتها و سلولهای میزبان نفوذ کننده و تغییری در مکانیزم دفاعی طبیعی میزبان بوجود نیاورند. از عوامل ضد میکروبی می‌توان به آنتی بیوتیکها اشاره کرد.

ارتباط میکروبیولوژی با سایر علوم

میکروبیولوژی یک علم کاربردی است که با بسیاری از شاخه‌های علوم رابطه نزدیک دارد. از جمله می‌توان به ژنتیک ، پزشکی ، زیست شناسی سلولی ، انگل شناسی ، قارچ شناسی پزشکی و بیوشیمی اشاره کرد.

نوشته شده در تاريخ 89/09/26 توسط  محمدصادق
همه محیط‌هایی که در آنها زندگی جریان دارد محیط زیست نامیده می‌شود. به عنوان مثال استخر آب ، یک شهر ، اقیانوس و کویر همگی انواعی انواعی از محیط زیست به حساب می‌آیند.

مقدمه

در محیط زیستی عوامل غیر زنده مانند خاک ، آب ، گازها و غیره به همراه جانداران وجود دارند. موجودات زنده با هم و با محیط غیر زنده خود ارتباطی متقابل برقرار می‌سازند. این ارتباط‌ها برای بقای محیط زیست بسیار لازمند. کارشناسان محیط زیست هنگام بررسی ، مناطق زیستی را مورد مطالعه قرار می‌دهند. هر منطقه زیستی شامل موجودات زنده ویژه عوامل غیر زنده است اکوسیستم نام دارد و دانشی که به بررسی اکوسیستم‌ها می‌پردازد. اکولوژی نامیده می‌شود.



img/daneshnameh_up/9/99/zist.jpg
پارک ملی یلوستون

پارکهای ملی
و محلهای طبیعی باید با دقت تمام
کنترل و اداره
شوند تا مراجعین ، تعادل زندگی
طبیعی را بر هم نزنند.
img/daneshnameh_up/0/0f/zist1.jpg
قطب جنوب

در اینجا یک گروه
از توریستهای زیست شناس را در منطقه
قطب جنوب مشاهده
می کنید روزی خواهد آمد که تمام
منطقه قطب جنوب
به یک پارک جهانی تبدیل شود.







عوامل زنده اکوسیستم

جانداران را براساس نقشی که در محیط دارند به دسته‌های زیر تقسیم می‌شوند.


  1. موجودات تولید کننده (گیاهان سبز)
  2. موجودات مصرف کننده (جانوران)
  3. موجودات تجزیه کننده (باکتری‌ها و قارچ‌ها)

ارتباط موجودات زنده با هم دیگر

مهم ترین ارتباط غذایی است که به صورت زنجیره غذایی و شبکه غذایی در جریان است. علاوه بر ارتباط کلی میان جانداران که به صورت زنجیره غذایی نشان داده می‌شود. انواع دیگری از ارتباط نیز میان آنها وجود دارد که در آن الزاما ارتباط غذایی منجر به از بین رفتن طرفین نمی‌شود بلکه در این نوع ارتباط جانداران به زیستن در کنار هم ادامه می‌دهند.

ارتباط غذایی

زنجیره غذایی

اگر وابستگی غذایی یک موجود زنده را با موجود زنده دیگر به صورت A→B نمایش دهیم بدین معنی است که موجود زنده A غذای موجود زنده B است و به عبارت دیگر B از A تغذیه می‌کند. بدین ترتیب می‌توانیم روابط غذایی زیر را که بین چند موجود زنده برقرار می‌شود نشان دهیم. در این روابط هر موجود زنده به صورت حلقه‌ای از یک زنجیر با موجود زنده دیگر مربوط می‌شود. هر یک از این روابط را یک زنجیره غذایی می‌نامند. در تمام این زنجیره‌های غذایی حلقه اول یک گیاه سبز است حلقه دوم یک جاندار گیاهخوار است و حلقه‌های بعدی را موجودات گوشتخوار تشکیل می‌شوند.

شبکه غذایی

چند زنجیره غذایی که با یکدیگر ارتباط داشته باشند یک شبکه غذایی را بوجود می‌آورند.

شبکه حیات

همه شبکه‌های غذایی با یکدیگر ارتباط دارند بطوری که همه موجودات زنده کره زمین یک شبکه غذایی بزرگ را تشکیل می‌دهد این شبکه غذایی بزرگ ، شبکه حیات نام دارد.

نوع دیگر ارتباط جانداران با هم

رقابت

در رقابت یک موجود به چیزهایی که مورد نیاز موجود زنده دیگر نیز هست احتیاج پیدا می‌کند. مثلا جانوران بین یافتن غذا و لانه سازی و غیره با هم رقابت می‌کنند. در عمل رقابت گاهی دو رقیب با یکدیگر با خبر نیستند. بعضی از رقابت‌ها میان جانداران یک گونه و برخی دیگر در بین جاندارانی که از گونه‌های متفاوت است صورت می‌گیرد. موضوع مورد رقابت اغلب جانوران غذاست. رقابت تختصاص به جانوران ندارد. گیاهان نیز برای بدست آوردن نور ، آب و کانی‌ها با هم به رقابت می‌پردازند.

هم زیستی

هم زیستی یعنی زندگی کردن با یکدیگر و با هم زیستن اما در اکولوژی منظور از هم زیستی هر نوع ارتباط نزدیک میان دو نوع موجود زنده است صورت‌هایی از هم زیستی عبارتند از:

هم سفرگی

در این نوع هم زیستی یکی از افراد ، نه سود می‌برند و نه زیان و دیگری سود می‌برد. مانند رابطه چسبیدن ماهی بادکش‌دار ، بدن کوسه ماهی ، که ماهی بادکش دار در این رابطه سود می‌برد.

همیاری

در این نوع هم زیستی دو موجود زنده هر دو از یکدیگر بهره می‌برند- همیاری ممکن است داوطلبانه و یا اجباری باشد. همیاری گل‌سنگها اجباری است و قارچی که در ساختمان گلسنگ بکار رفته بدون جلبک سبز قادر به ادامه حیات است میان باکتری‌ها و گیاهان تیره نخود نیز همیاری است - همیار s شته و مورچه حالت اجباری دارد.

زندگی انگلی

در این نوع همزیستی یک موجود (انگل) سود می‌برند و موجود دیگر (میزبان) زیان.

زندگی صیادی

مستقیم‌ترین رابطه غذایی هنگامی وجود دارد که جاندار دیگر را بخورد. هر مصرف کننده‌ای که جانداری دیگر را بکشد و بخورد یک صیاد است و جانداری که خورده شود صید نام دارد.

عوامل غیر زنده اکوسیستم

گرما

بیشتر از اشعه مادون قرمز بخشی از نور خورشید به دست می‌آید و در فعالیت‌های موجودات زنده نیز انرژی به صورت گرما آزاد می‌شود.

دما

یکی از عوامل غیر زنده محیطی است و تغییرات زیادی دارد و کلیه جانداران به نحوی با این تغییرات سازش پیدا کرده‌اند سازش باعث بقای جانوران می‌شود.

نور

نور نقش مهم در غذاسازی تولید کننده دارد.

گازها

مهم‌ترین گازهایی که در اتمسفر وجود دارند عبارتند از : اکسیژن و دی‌اکسید کربن. که اکسیژن در تنفس و در اکسید کربن در فتوسنتز نقش دارد.

آب

آب به صورت تبخیر شده وارد اتمسفر می‌شود و به صورت برف و باران به زمین برمی‌گردد.

مواد شیمیایی

به دو صورت کانی و آلی در اکوسیستمها وجود دارد مواد آلی ناشی از تجزیه موجودات زنده ، در اکوسیستمهای مختلف مورد استفاده جانداران قرار می‌گیرد. مواد کانی نیز به ترکیبات مختلف مثل نمک خوراکی یا کلریدسدیم که در غذای آدمی مهم است و یا کودهای شیمیایی که در حاصل خیزی خاک اهمیت دارد
نوشته شده در تاريخ 89/09/26 توسط  محمدصادق
از نظر انواع موجودات زنده مورد مطالعه ، دانش بوم شناسی به بوم شناسی گیاهی ، جانوری و انسانی تقسیم می‌شود. موضوع بوم شناسی گیاهی بررسی روابط بین گیاهان مختلف با خود و با محیط پیرامون آنهاست.

مقدمه

هر موجود زنده‌ای برای برخی از فرآورده‌ها و فرایندهای زیستی اساسی بطور انکارناپذیری به محیط زیست خود و بویژه به موجودات زنده دیگر وابسته است. لازمه بقا ، همبستگی گروهی است و بررسی چگونگی این همبستگیها مورد توجه دانش اکولوژی است. دانش اکولوژی مجموعه شناختهایی است که انسان درباره اثرات محیط بر روی موجودات زنده ، اثرات موجود زنده بر روی محیط و ارتباطات متقابل بین موجودات زنده دارد.


تصویر



وقتی موجود زنده‌ای از لحاظ بوم شناسی مورد مطالعه قرار می‌گیرد، هدف این است که معلوم شود، چرا موجود مورد نظر در محیطهای خاص و تحت شرایط معینی زندگی می‌کند؟ شرایط محیطی چه اثراتی بر موجود زنده دارند؟ و موجود زنده به نوبه خود چه تحولاتی در محیط پدید می‌آورد؟ طبیعی است که خود انسان به عنوان یک موجود زنده ، متاثر از عوامل محیط و موثر بر روی عوامل طبیعت در چارچوپ مطالعات اکولوژی از توجه و اهمیت ویژه‌ای برخوردار است.

تعریف جامعه گیاهی

کوچکترین واحد اجتماعات گیاهی را جامعه گیاهی می‌نامند. یک جامعه گیاهی مانند سایر جامعه‌ها از افراد متعددی تشکیل یافته است که در بعضی صفات با یکدیگر شباهت دارند و همین اشتراک منافع و وجود صفات مشترک سبب شده است که در شرایط واحد برویند و به طریق همزیستی معنوی با یکدیگر زندگانی کنند. بنابراین دو اجتماع گیاهی که از لحاظ سیمای ظاهری و ترکیب و صفات بوم شناختی (فراوانی ، بارز بودن یا غلبه ، تراکم ، اهلیت ، توانایی زیستی ، طبقه بندی ، وابستگی و ...) با یکدیگر مشابه باشند، جامعه گیاهی واحدی را تشکیل می‌دهند.

تعریف جامعه شناسی گیاهی

دانشی که اجتماعات گیاهی را مورد بررسی قرار می‌دهد و درباره صفات مختلف آنها ، تغییرات حاصل از نفوذ شرایط محیط در اجتماعات مذکور و همچنین تکامل این اجتماعات بحث و گفتگو می‌کند، جامعه شناسی گیاهی نامیده می‌شود. دانش جامعه شناسی اعم از اینکه جامعه مورد نظر انسانی یا جانوری یا گیاهی باشد، هیچ گاه با یک فرد از آن اجتماع سروکار ندارد، بلکه با گروه و توده افراد در ارتباط است.



تصویر

صفات بوم شناسی

صفات بوم شناسی عبارتند از: فراوانی ، بارز بودن ، تراکم ، اهلیت ، توانایی زیستی ، طبقه بندی ، وابستگی و غیره.

صفات مختلف بوم شناختی ، جامعه‌های گیاهی را از یکدیگر مشخص می‌کند و سبب تمایز آنها از یکدیگر می‌شود. مثلا فراوانی ، تعداد افراد یک گیاه در واحد سطح است و غلبه معرف پوشش و سطحی است که گیاه اشغال کرده است. بنابراین فراوانی و غلبه یک گونه گیاهی ، در جامعه‌های مختلف متفاوت است و یک گیاه ممکن است فراوان باشد، ولی پوشش زیاد نداشته باشد. بالعکس گیاه دیگر هر چند به فراوانی نوع اول نباشد، ولی ممکن است پوشش زیادی داشته باشد و از لحاظ غلبه بر او پیشی بگیرد.

بطور کلی در یک جامعه گیاهی یک یا دو گیاه غالب وجود دارد. گیاهان غالب ممکن است یک ساله ، چند ساله ، درختچه و یا درخت باشند که به نسبت بیشتری از محیط خود بهره‌مند می‌شوند. نامی که به یک جامعه گیاهی داده می‌شود، از گیاهان غالب آن جامعه گرفته شده است. مانند جامعه راشستان و بیدستان.

وابستگی گیاهان به جامعه‌های مختلف یکسان نیست. مثلا بعضی از گیاهان در جامعه‌های مختلف دیده می‌شوند و گیاه هر منطقه‌ای محسوب می‌گردند. در حالی که بعضی دیگر در جامعه‌های محدودتری ظاهر می‌شوند، لذا نمی‌توانند خود را با محیطهای مختلف و عوامل گوناگون سازش دهند و ناچار در همه جوامع دیده نمی‌شوند. بعضی دیگر فقط به جامعه خاصی بستگی دارند و در شرایط محدودی که در آن جامعه برایشان فراهم است، ظاهر می‌گردند. در چنین حالتی این گیاهان معرف آن جامعه محسوب می‌شوند.

عوامل پراکنش گیاهان

شرایط مختلف محیط در همه نقاط سطح زمین به یک میزان فراهم نیست و از این رو در نقاط مختلف ، گیاهان متفاوتی دیده می‌شوند. بطور کلی عوامل اکولوژی عبارتند از : عوامل آب و هوایی یا اقلیمی ، عوامل خاکی ، عوامل زیستی. این است که ترکیب و سیمای رستنیهای مختلف در هر گوشه جهان مشخص است و با نقاط دیگر تفاوت فاحش دارد. به عنوان مثال اختلاف تابش نور خورشید در عرضهای جغرافیایی مختلف در ترکیب و سیمای مدارات مختلف تغییراتی ایجاد می‌کند. بطوری که سیمای جنگلهای استوایی کاملا با سیمای جنگلهای معتدل فرق می‌کند.

با این حال اگر شرایط محیط در دو نقطه مساوی و یکنواخت باشد، نیز ممکن است در ترکیب رستنیهای آن دو نقطه اختلاف شدید مشهود گردد، زیرا موانع طبیعی بسیاری می‌توانند از پراکنش گیاهان در نقاط مناسب جلوگیری کنند. عوامل طبیعی مانند اقیانوسها ، کوهها و بیابانها مانع کلی پراکندگی گیاهان در دو محیط مشابه‌اند و اگر این سدهای طبیعی ، قاره‌ها و خشکیها را از یکدیگر جدا نمی‌ساخت، شاید پراکنش بسیاری از گیاهان مختلف جهان سریع‌تر صورت می‌گرفت.




عوامل آب و هوایی

گیاهان تحت تاثیر آب و هوا قرار گرفته و شکل زیستی خاصی می‌یابند، یعنی شکل و سیمای ظاهری آنها تا حدی تابع آب و هوای محیطشان می‌شود و در این صورت می‌توانند کم و بیش از تقسیمات کلی آب و هوایی موثر واقع شوند. بدیهی است درختان و جنگلها همواره بر اثر تعریق ، مقدار متنابهی بخار آب دفع می‌کنند و بر مقدار بخار آب جو به میزان قابل ملاحظه‌ای می‌افزایند. در این صورت مناطق جنگلی همواره در اثر باران مشروب می‌شوند و دارای آب و هوای مرطوب‌اند. هر قدر تعداد درخت در محیطی کمتر باشد و به جای آن بوته‌های گیاه و چمنزار سطح خاک را بپوشاند، به همان نسبت از بارندگی محیط و رطوبت زمین کاسته می‌شود.

دما و بارندگی از عوامل اقلیمی مهمی هستند که ظهور گونه‌های مختلف گیاهی و رویش آنها را تعیین می‌کنند. دما بر فعالیتهای تعرق ، تنفس ، رویش ، رشد و تولید مثل تاثیر می‌گذارد. بارندگی سالیانه عامل اصلی در تعیین انتشار گیاهان است. بطور کلی جنگلها ، نواحی پرباران را اشغال می‌کنند. صحراها در نواحی کم باران دیده می‌شوند و علفزارها در نواحی دارای بارندگی متوسط وجود دارند. نور سومین عامل اقلیمی مهمی است که در رشد گیاه ، گل دادن و فتوسنتز آن تاثیر بسزایی دارد. بسیاری از گونه‌ها نیازهای نوری نسبتا معینی دارند. برخی از آنها مانند رستنیهای کف جنگل ، برای رشد به نور کم و بعضی دیگر مانند درختان به نور زیاد دارند.

عوامل خاکی

عواملی که در پراکنش ، رشد و بقای گیاه تاثیر می‌گذارند، عبارتند از: دمای خاک ، مقدار آب ، اکسیژن ، مواد آلی ، مواد کانی و درجه اسیدی خاک. دمای خاک در رشد گیاه بویژه از لحاظ تاثیر در جذب آب و مواد کانی ، عامل موثری به شمار می‌آید. در دماهای پایین ، دراز شدن ریشه متوقف گشته، سبب کندی نفوذ آن به طبقات واجد آب و مواد کانی می‌شود، لذا میزان جذب آب و مواد کانی کاهش می‌یابد. باکتریها نیز در خاک سرد غیر فعال‌اند. بنابراین مواد کانی به اندازه کافی در دسترس ریشه قرار نمی‌گیرد. در این صورت کشتکاران ناگزیرند از کودهای نیتروژن‌دار استفاده کنند. دمای پایین خاک و هوا ، همراه با بادهای شدید ، سبب کوتاه ماندن گیاهان نواحی کوهستانی می‌شوند.



تصویر

عوامل زیستی

گیاهان در طبیعت همراه با سایر موجودات زنده ، اعم از جانور و گیاه ، زندگی می‌کنند و از این رو هر یک از آنها کم و بیش در زندگی موجودات دیگر تاثیر دارد. بطور کلی طبیعت میدان تنازع بقاست و ضعیف همواره مغلوب قویتر از خود می‌شود. جانوران و پستانداران گوشتخوار ، پستانداران علفخوار را طعمه خود می‌سازند و علفخواران از رستنیها و گیاهان وحشی تغذیه می‌کنند و کمک آنها به جامعه گیاهی فقط ریختن فضولات و تقویت جزئی خاک است.

خرگوش و موش و مورچه خسارات زیادی به جامعه‌های گیاهی وارد می‌سازند، ولی در اثر احداث راهروهای زیر زمینی خاک را تهویه می‌کنند و یا آنکه در پراکندگی دانه‌ها و سایر فعالیتها بوم شناسی موثرند. بنابراین جانورانی که در جامعه گیاهی زیست می‌کنند، هر در وضع محیط زیستی خود موثرند و اثرات سودمند یا زیانبخش بر روی آن جامعه باقی می‌گذارند و حالت تعادل را برقرار می‌سازند، بطوری که از بین رفتن یکی از آنها موازنه طبیعی آن جامعه را بر هم می‌زند و دگرگون می‌سازد.

تنازع بقا یکی از مسائل مهم زیستی جهان گیاهی و از خواص عمومی جوامع گیاهی به شمار می‌رود و در بین افراد یک گونه و یا گونه‌های مختلفی که در مجاورت یکدیگر می‌رویند و دارای نیازهای مشترک‌اند و به وجود دیگری نیاز ندارند، حکمفرماست. بنابراین تنازع بقا از مشخصات جامعه‌های گیاهی است.هنگامی که گیاه در شرایط مناسب می‌روید و در معرفی کمبود مواد غذایی و عواملی مانند نور و هوا واقع نشده است، یعنی ریشه آن به راحتی از آب و مواد غذایی استفاده می‌کند و ساقه و برگ آن نیز از نور و هوا بهره‌مند می‌گردد و بطور کلی مزاحمتی برای گیاه مجاورش فراهم نمی‌سازد، مسئله تنازع بقا مفهومی ندارد.

ولی پس از آنکه تعداد افراد رو به افزایش گذاشت و گیاهان مختلف با یکدیگر تماس نزدیک حاصل کردند و به عبارت دیگر ، اصطکاک منافع بین آنها ایجاد شد، گیاه قویتر ، گیاه ضعیفتر را حتی اگر از افراد همان گونه باشد، در مضیقه می‌گذارد و از شرایط زندگی و حق حیات محروم می‌سازد تا حدی که باعث از بین رفتن آن می‌شود. بنابراین تنازع بقا معرف کمبود مواد و عوامل مورد نیاز برای زندگی گیاه است و نشانگر آن است که آب و نور و مواد غذایی به حد کافی در اختیار کلیه گیاهان دیگر قرار ندارد.



تصویر

توالی گیاهی

بطور کلی مراحل تغییر تدریجی یک اکوسیستم را که در مدتی طولانی و در طول قرنها رخ می‌دهد، توالی گویند. در توالی بوم شناختی ، اجتماعات مختلف بطور متوالی و منظم در محل معینی پدید می‌آیند. ترتیب اجتماعات که از روی سنگ برهنه آغاز می‌شود و مثلا تا تشکیل یک جنگل بلوط و گردو ادامه می‌یابد، توالی اولیه نام دارد، یعنی قبلا اجتماعی در این محل وجود نداشته است.

در موارد دیگر اجتماعاتی که در گذشته بوده و از بین رفته‌اند، همچنان بر ویژگیهای محیط فیزیکی اثر خواهند داشت. به عنوان مثال این اثر وقتی رخ می‌دهد که جنگلی با آتش سوزی ویران شود. توالی در این محل یعنی روی خاکی آغاز می‌شود که با فعالیتهای اجتماعات پیشین تعدیل شده است. بنابراین ترتیب اجتماعات در مناطقی که قبلا در آنها اجتماع زیستی وجود داشته، نمونه‌های توالی ثانویه هستند.

نوشته شده در تاريخ 89/09/26 توسط  محمدصادق
سیستماتیک گیاهی پهنای وسیعی از علوم است که اطلاعات و مشخصات گیاهان را که به نوبه خود از طریق مطالعات اولین ، از قبیل توصیف و نامگذاری شناخته شده‌اند با تاکید بر کلیه صفات و وابستگیهای آنها و با توجه به اطلاعات بدست آمده از سایر شاخه‌های علوم مورد بررسی قرار می‌دهد.




تصویر

مقدمه

سیستماتیک یکی از شاخه‌های بسیار قدیمی و مهم علم گیاه شناسی است. انسانهای اولیه به گیاهان خوراکی و دارویی اطراف خود توجه خاصی داشتند و صدها نوع از آنها را می‌شناختند و به این ترتیب نخستین گروههای تاکسونومیک گیاهی بر اساس چنین شناختی شکل گرفت. سیستماتیک گیاهی اختلافات بارز و برجسته گروههای گیاهی را تصویر می‌کند.

نام هرگیاه در واقع کلیدی است که با آن دریچه‌ای بر زیست شناسی آن گیاه گشوده می‌شود. سیستماتیک گیاهی باشناخت و نامگذاری گیاهان و به نظم کشیدن آنها در گروههای خویشاوند و بسیار نزدیکی همچون جنس ، خانواده و ... سروکار دارد. بطور کلی این علم شامل مجموعه فعالیتهایی است که به منظور سازماندهی و ثبت تنوع گیاهان انجام می‌شود.

تاریخچه

تا سده هجدهم میلادی ، بیشترین توجه به شناخت و طبقه ‌بندی گیاهان زراعی و دارویی معطوف می‌گردید و طبعا سیستم رده‌بندی مصنوعی ، که غالبا بر اساس مشخصات کاربردی گیاهان استوار بود مورد استفاده قرار می‌گرفت از اواسط این سده سیستم نامگذاری و طبقه بندی پیشنهاد توسط لینه تحولی در علم طبقه ‌بندی گیاهان پدید آورد.

در اواخر سده هجدهم میلادی نظر غالب گیاه شناسان به سیستم‌های طبقه‌ بندی طبیعی که بر پایه صفات ریخت شناسی گیاهان استوار بود جلب گردید. در سده نوزدهم میلادی با ارائه نظریه تکاملی داروین و توجه به توالی تکاملی در طبقه ‌بندی گیاهان ، مبنای طبقه بندی فیلوژنتیک پایه گذاری شد و در سده بیستم میلادی به سیستم‌های فیلوژنتیک واقعی رسید که اساس رده بندی نوین معاصر را تشکیل می‌دهد.



تصویر

اهداف سیستماتیک گیاهی

سیستماتیک گیاهی 4 هدف را دنبال می‌کند.

  • فهرست کردن فلور جهان

  • ارائه راه به منظور شناسایی و ایجاد ارتباط

  • بوجود آوردن یک سیستم ارتباطی مستقیم و جهانی

  • نشان دادن مفاهیم تکاملی تنوع در عالم گیاهی

سیستم‌های طبقه بندی امروزی بر خلاف سیستم‌های قدیمی‌تر ، تنها بر پایه مشخصات مورفولوژیک استوار نبوده بلکه سایر اختصاصات بیولوژیک گیاهان را در طبقه بندی بکار می‌گیرد و در این راستا ، توجه به جنبه‌های تکاملی ، وابستگی‌های ژنتیکی و ساختار شیمیایی آنها از تاکید بیشتری برخوردار است.

توجه به اصل عمومی تک نیایی تاکسون‌ها در سیستماتیک گیاهی اهمیت شناخت و کاربرد علم تکامل گیاهان را برای دستیابی به قرابتها و دودمانهای تکاملی در سطوح نظام سلسه نسب روشن می‌سازد. چون در سیستمهای طبقه بندی امروزی که بر پایه صفات متعددی استوارند ریخت شناسی به تنهایی اساس طبقه بندی را تشکیل نمی‌دهد، لذا لزوما تمام صفات مورفولوژیک دارای ارزش یکسانی در طبقه بندی و توصیف تاکسونها نبوده و در هر مورد دارای کاربرد خاص خواهند بود.

مراحل سیستماتیک گیاهی

  • سیاحت و اکتشاف و جمع آوری گیاهان

  • پرس کردن و خشک کردن گیاهان و تهیه هرباریوم گیاهی

  • دوره سنتز یا استفاده از ویژگیهای ریخت شناسی ، شکل و ساختار گیاهان به منظور طبقه بندی آنها

  • مرحله تجربی که به تفسیر اطلاعات بدست آمده در قالب واژه‌های تکاملی وفیلوژنتیک مربوط می‌شود.

شاخصهای ریخت شناسی فیلوژنی

صفات ابتدایی در طبقه بندی فلوژنی به مفهوم صفاتی است که مقدم‌تر از صفات دیگر بوجود آمده‌اند نه صفات ساده‌تر در قبال پیچیده‌تر و این امر بخصوص در مورد گیاهان گلدار مشهورتر است برای مثال گیاهان یکساله پایا و دو ساله و این گروهها از گیاهان چوبی اشتقاق یافته‌اند و یا گلهای دو جنسی مقدم بر گلهای تک‌جنسی‌اند. میزان تکامل در تمام اندامهای گیاه همیشه یکسان نیست و ممکن است برخی از اندامها تخصصیتر از سایر اندامها شده و بعضی از تاکسونها هر دو صفات پیشرفته و ابتدایی را در خود داشته باشند.



تصویر

طبقه بندی سلسله گیاهان

گیاهان خشکی اولیه در دوره دونین ظاهر شده و فاقد ریشه و ساقه و برگ بوده و ظاهری شبیه جلبکها داشته‌اند. قدیمی‌ترین سنگواره‌های بدست آمده که به عنوان نیاکان گیاهان آوندی شناخته می‌شوند مربوط به دو گیاه منقرض شده Zosterophllumo و Phynia می‌باشد. به احتمال زیاد بریوفیتا قبل از شکل گیری و تمایز دستگاههای آوندی این گیاهان از مسیر تکاملی آنها منشعب شده‌اند. در هر صورت سنگواره‌ای از بریوفیت‌های اولیه در دست نیست.

گیاهان نوعZosterphyllum منشا لیکوپودیوفیتا می‌باشند. این گروه در اواخر دوارن پالئوزوئیک دارای پراکندگی وسیع و انواع متعددی بوده اند. لیکن امروزه فقط معدودی از جنس‌های علفی به حیات خود ادامه می‌دهند. گیاهان نوع Phynia به عنوان نیاکان سایر گیاهان آوندی به شمار می‌آیند که به نوبه خود در مسیرهای متفاوتی تکامل یافته‌اند.

سیستماتیک گیاهی: زمینه‌ای علمی مربوط به دنیای امروز

در دنیای امروز دانش مربوط به شناسایی ، نامگذاری و رده بندی گیاهان زمینه مطالعاتی مهیجی است. کاربردهای بالقوه اقتصادی گیاهان شاید بلافاصله مشهود نباشد، اما ناگزیریم گیاهان خویشاوند را بشناسیم. خویشاوندهای وحشی گیاهان زراعی معمولا حاوی ژنهایی هستندکه خصوصیت مطلوبی چون مقاومت در برابر بیماریها را که برای اصلاح محصولات زراعی موردنیاز متخصصین اصلاح نژاد است فراهم می‌کنند.

ارتباط با سایر علوم

سیستماتیک گیاهی یکی از علوم پرکاربردی است که با بسیاری از رشته‌ها ارتباط نزدیک دارد. که می‌توان به گیاه شناسی ، مورفولوژی گیاهی ، فیزیولوژی گیاهی ، بیوشیمی گیاهی و ژنتیک گیاهی و اکولوژی گیاهی اشاره کرد
نوشته شده در تاريخ 89/09/26 توسط  محمدصادق
انگل شناسی علم پرداختن به موجودات زنده‌ای است که برای بدست آوردن غذا ، بطور موقت و یا دائم در سطح خارجی یا داخل بدن موجودات زنده دیگر زندگی می‌کنند. این علم همچنین به رابطه این موجودات به میزبانان خود می‌پردازد.

مقدمه

دامنه وسیع علم انگل شناسی از ماکرو‌اکولوژیکی تا میکرو‌اکولوژیکی و بیوشیمیایی و بهداشت عمومی ، جغرافیا ، علوم اجتماعی و اقتصادی و علوم مرتبط با آنها را شامل می‌شود. در سالهای اخیر سازمان جهانی بهداشت اعلام کرده است که شش بیماری مهم انسانی در جهان منتشر است. پنج بیماری از این شش بیماری انگلی است که عبارتند از: شیستوزومیازیس ، مالاریا ، فیلاریازیس ، تریپانوز و میازیس آفریقایی و لیشمانیازیس. بیماری ششم نیز جذام است که عامل باکتریایی دارد.

در نتیجه انگل شناسی پزشکی در بین شاخه‌های علوم پزشکی و دانشمندان علوم پزشکی اهمیت زیادی پیدا کرده است.انگل شناسی از نظر رشد و توسعه علوم بویژه کاربردهای طبی ، دامپزشکی ، کشاورزی و صنایع غذایی اهمیت زیادی دارد. بنابراین روشن است که آشنایی با زندگی انگلی و انگلها ، نه تنها از نقطه نظر رشد و توسعه علوم ، بلکه از نظر کاربردهای عملی آن نیز بسیار مهم است.

جنبه‌های زندگی انگلی

چهره واقعی زندگی انگلی غالبا قابل لمس و درک نیست، زیرا روابط بین انگلها و میزبان آنها بسیار پیچیده است. انگل شناسی در واقع یکی از چهار جنبه مختلف از سیمبیوزیس است.

سیمبیوزیس

هر حیوان ، گیاه و یا موجود زنده اولیه‌ای آغازیان یا(پروتیستا) که بخشی یا تمام زندگی خود را به همراه موجود دیگر از جنس دیگری می‌گذارند، را یک سیمبیونت یا سیمبیوت می‌نامند. چهار شکل از سیمبیوتیک شناخته شده است. اگر چه خط تفکیک بین آنها کاملا دقیق نیست. بویژه انواع اشکال سیمبیوزیس که شناخته شده‌اند، فورزیس ، کامنسالیسم ، پارازیتیسم و موچوآلیسم می‌باشد.


  • فورزیس: هیچ نوع وابستگی از نظر متابولیکی و یا غیر از آن بین آنها وجود ندارد. نمونه این نوع زندگی انتقال باکتریها توسط اتصال به پای حشرات است. اگر چه پرواز حشره از جایی به جای دیگر به انتقال باکتری منجر می‌شود، ولی هیچ اجباری در این ارتباط از دو طرف نیست و اصولا یک نوع رابطه اتفاقی است.

  • کامنسالیسم: یک مثال در این مورد در شرایط محیطی دریایی ، رابطه بین آمفی پریون پرکولا یا کنتروکاپروس آکوله آتوس با شقایق دریایی. ماهی در بین خارهای شقایق دریایی زندگی می‌کند، در حالی که هیچ نوع آزاری از سوی میزبان نمی‌بیند. با توجه به اینکه ترشحات ماهی باعث حفاظت در مقابل نماتوسیتهای میزبان می‌شود. این لایه حفاظتی که ماهی ایجاد می‌کند، فقط پس از ورود و خو گرفتن اولیه ماهی است. پس از ورود ماهی به درون خارهای شقایق دریایی ، این عمل حفاظتی نیز انجام شده، ماهی از آسیب ماهی خوارها به خاطر وجود نماتوسیتهای میزبان محفوظ می‌ماند. علاوه بر محافظت ، ماهی از غذای میزبان نیز برخوردار می‌شود.

  • پارازیتیسم: پارازیتیسم عبارتست از نوعی زندگی اجباری دو موجود با هم که انگل کوچکتر است و از جنبه متابولیکی با میزبان رابطه دارد. این ارتباط ممکن است دائمی باشد. مثلا کرمهای پهن نواری که در روده پستانداران دیده می‌شوند. یا ممکن است موقتی باشد. مانند پشه‌ها ، ککها یا کنه‌های خونخوار. گفته می‌شود که پارازیتیسم یک رابطه اجباری است، زیرا انگل بطور معمول نمی‌تواند بدون ارتباط و تماس با میزبان خود باقی بماند.

    انگلهای خونخوار مانند کنه‌ها ، ککها و پشه‌ها از نمونه‌های اولیه خونخواری مستقیم از میزبان هستند. چون ارتباط بین انگل و میزبانش عموما شامل تماس میزبان با مواد آنتی ژنی انگل است، خواه ناخواه این مولکولها با بدنه انگل (آنتی ژنهای سوماتیک) یا ترشحات و یا مواد دفعی انگل (آنتی ژنهای متابولیک) مقایسه می‌شوند. آنتی بادیها معمولا توسط میزبان در واکنش به انگل تولید می‌شوند. بنابراین بر عکس فورزیس و کامنسالیسم زندگی انگلی علاوه بر وابستگی متابولیک در بخشی از انگل ، عموما شامل پاسخهای میزبان در برابر بخش دیگری از انگل می‌باشد.

  • موچوآلیسم: نمونه معروف این نوع زندگی گلسنگها هستند که ترکیبی از قارچها و آلگها هستند. در طی این ارتباط ، آلگها مقدار زیادی ترکیبات آلی تولید می‌کنند که این مواد توسط قارچها مصرف می‌شوند. در حالی که قارچها نیز آب و مواد معدنی مورد نیاز آلگها را تولید می‌کنند. آنها را از خشک شدن و خطر نور شدید محافظت می‌کنند. نمونه دیگر موچوآلیسم رابطه برخی از تاژکداران موجود در روده موریانه‌های چوبخوار است.

رابطه انگلها با میزبان

انگلها به اشکال مختلفی با میزبان خود رابطه برقرار می‌کنند که می‌توان انگل اجباری یا اختیاری ، موقتی یا دائمی ، خارجی یا داخلی ، اتفاقی یا سرگردان ، بیماری‌زا یا غیر بیماری‌زا و زئونوزرا را نام برد.

به علاوه میزبانها نیز اشکال مختلفی دارند. از جمله میزبان واسط یا نهایی ، ناقل مکانیکی یا ناقل ترانسفر ، مخزن و بالاخره هایپرپارازیتیسم را ذکر کرد و برخی از سیمبیونتها نیز رابطه استفاده متقابل تحت عنوان نظافتچی و نیازمند حفاظت با یکدیگر برقرار می‌کنند. بطور مثال در محیطهای دریایی ، برخی از انواع ماهیها و سخت پوستان وظیفه پاک کردن بدن گونه‌های بزرگتر را به عهده می‌گیرند. این عقیده وجود دارد که منفعت حاصل از این کار دو طرفه است و انواع مختلف دارای این زندگی هستند. از جمله تمساح با مرغ مصری ، گاوهای اهلی با مرغ ماهیخوار و کرگرن با پرندگان کنه خوار.

عفونت و بیماری انگلی

انتقال انگلهای مستلزم وجود سه عامل است: یک منبع عفونت ، یک راه انتقال و وجود یک میزبان حساس. برایند ترکیب عوامل فوق ، تعیین کننده شیوع انگل در یک زمان و مکان معین است.راههایی که انگل بوسیله آنها از منبع اولیه به میزبانان حساس میرسد متفاوت است. شانس بروز عفونت در شرایط محیطی مناسب که در آن انگل بتواند خارج از مواد دفعی زندگی کند و نیز در شرایط فقدان بهداشت فردی و اجتماعی افزایش می‌یابد. انسان مبتلابه عفونت انگلی می‌تواند به اشکال زیر عمل نماید.
  • تنها به عنوان میزبان انگل
  • همراه با دیگر حیوانات به عنوان میزبان اصلی
  • به عنوان میزبان تصادفی همراه با یک یا چند حیوان به عنوان میزبانهای اصلی.
علاوه بر لزوم سازگار بودن طبیعی انگل با میزبان خود ، سهولت انتقال انگل بستگی به عادات و تجمع گروهی و نیز مقاومت میزبان دارد.

تشخیص

تظاهرات بالینی در اغلب بیماریهای انگلی آن قدر عمومی است که در بسیاری موارد بنای تشخیص بر پایه نشانه شناسی کافی نیست. اگر چه یک پزشک باتجربه ممکن است علائم و نشانه های ویژه برخی بیماری انگلی را شناسایی کند ولی در موارد غیر معمول ممکن است نشانه‌ها آنچنان گیج کننده باشند که هیچ تابلوی بالینی واضحی را نشان ندهند. همچنین بسیاری از عفونتها بویژه عفونتهای کرمی نشانه های کم و غیر مشخصی داشته و اغلب از نظر بالینی غیر قابل افتراق هستند. تشخیص نهایی و شیوه درمانی درست نیاز به شناسایی انگل در آزمایشگاه دارد.

درمان

درمان موفقیت آمیز بیمار شامل اقدامات پزشکی و روشهای جراحی ، توجه به وضعیت غذایی و دارو درمانی اختصاصی است. پزشک باید توانایی بیمار در همکاری آگاهانه ، بهسازی محیط ، همه گیر شناسی بیماری و انتخاب روشهای جلوگیری از گسترش عفونت را نیز مد نظر داشته باشد. در طی 10 تا 15 سال اخیر پیشرفتهای قابل توجهی دردرمان بیماریهای انگلی صورت گرفته است. هم اکنون داروهای موثر و نسبتا غیر سمی متعددی برای درمان اغلب بیماریهای انگلی در دسترس است.

نوشته شده در تاريخ 89/09/26 توسط  محمدصادق
بیماری آلزایمر ، بوسیله از دست رفتن پیشرونده حافظه کوتاه مدت و به دنبال آن از بین رفتن عملکرد اشخاص و مرگ در میان سالی مشخص می‌شود. تغییرات اولیه بیماری آلزایمر شامل از بین رفتن قشر مخ است.

دید کلی

بیماری آلزایمر 2 تا 5 درصد اشخاص مسن را دربر می‌گیرد و گاهی هم بر اشخاص جوانتر حمله می‌کند. به نظر می‌رسد که بیماری آلزایمر در اثر فاسد شدن سلولهای منطقه هیپو کامپ که معمولا مقدار زیادی استیل کولین تولید می‌کنند بوجود می‌آید. سلولهای مغزی یا نرونهایی که آسیب دیده‌اند پلاکهایی جمع می‌کنند و به تعداد زیادی می‌میرند. منطقه آسیب دیده مغز و استیل کولین در تشکیل خاطرات جدید وارد عمل می‌شوند به همین دلیل یکی از نشانه‌های اصلی بیماری آلزایمر عدم توانایی در تحکیم یک یادگیری تازه (مثل یادآوری آدرس تازه) و دشواری در جهت‌یابی است. اما خاطرات رویدادهای دور معمولا کمتر آسیب می‌بینند.



تصویر

علت بیماری

تقریبا 10 درصد افراد بالای 60 سال ، زوال عقل دارند و حدود نیمی عقل دارند از آنها مبتلا به آلزایمر می‌باشند. آلزایمر نوعی بیماری ناهمگن از نظر ژنتیکی است که در تمام نژادها دیده می‌شود. 5 درصد بیماران دچار بیماری خانوادگی با تظاهر زود هنگام ، 15 - 25 درصد دچار بیماری خانوادگی با تظاهر دیررس ، 75 درصد مبتلا به بیماری تک گیر می‌باشند. 10 درصد موارد آلزایمر خانوادگی ، توارث اتوزومی غالب و بقیه چند عاملی را نشان می‌دهند.

مهمترین یافته‌های شناختی بیماری آلزایمر ، رسوب دو پروتئین رشته‌ای پپتید بتاآمیلویید تاو در مغز می‌باشند. پپتید بتاآمیلویید که از پروتئین رمز گردانی شده توسط یکی از ژنهای مستعد کننده به بیماری آلزایمر خانوادگی بوجود می‌آید، در پلاکهای آمیلویید یا پیری در فضای خارج سلولی مخ مبتلایان به آلزایمر یافت می‌شود. پلاکهای آمیلویید ، حاوی پروتئینهای دیگر علاوه بر بتاآمیلویید می‌باشند. از جمله آپولیپو پروتئین E که این هم توسط نوعی ژن مستعد کننده به آلزایمر (APOE) رمز گردانی می‌شود.

اشکال هیپر فسفریله پروتئین تاو (Tau) ، کلافهای نورو فیبریلاری را تشکیل می‌دهند که برخلاف پلاکهای آمیلویید در داخل نورونهای آلزایمر یافت می‌شوند. تاو یک پروتئین مرتبط با میکرو توبولهاست که بطور وافری در نورونهای مغز بروز می‌یابد. این پروتئین ، تجمع و پایداری میکروتوبولها را که بر اثر فسفوریلاسیون کاهش می‌یابد، تقویت می‌کند. تشکیل کلافه‌های و نورو فیبریلازی تاو ظاهرا یکی از علل استحاله نورونی در بیماری آلزایمر است.

علائم بیماری

در اکثر موارد ، بیماری آلزایمر در اشخاص مسن و در فاصله زمانی 8 تا 20 سال به تدریج رشد می‌کند. قربانی این بیماری ، ابتدا افت حافظه پیدا می‌کند و اغلب گم شدن حتی در خانه خود بیمار نیز پیش می‌آید. به مرور زمان ، بیمار جهت‌یابی خود را به شدت از دست می‌دهد، اشخاص و حتی اعضای خانواده خود را نمی‌شناسد، هیجانهای کودکانه نشان می‌دهد و از عهده نظافت خود و لباس پوشیدن بر نمی‌آید.

پیشگیری مقدم بر درمان

سالمندانی که از بیماری آلزایمر یا از اختلالهای حافظه‌ای سبک رنج می‌برند، می‌توانند عادات خود را انطباق دهند. همه ما ، پیر و جوان می‌توانیم یک دفترچه یادداشت و یک مداد در جیب خود یا در کنار تلفن داشته باشیم و پیامهای خود را خیلی راحت در آن بنویسیم. ما حتی می‌توانیم یک تقویم به همراه داشته باشیم و رویدادهای پیش‌بینی شده ، حتی کارهای روزمره را در آن بنویسیم.

اشخاصی که از افت حافظه رنج می‌برند، می‌توانند روی روزهایی که سپری می‌شود خط بکشند. می‌توانند از داروهایی استفاده کنند که مقدار آنها برای هر روز از هفته و ماه مشخص شده است. برقراری نظم روزانه و کمک گرفتن از وسایل کمک حافظه بسیاری از سالمندانی را که توانایی تشکیل خاطرات تازه را ندارند از دشواریهای حاد نجات دهد.



تصویر

درمان‌

  • اگر یکی‌ از اعضای‌ خانواده‌ دچار این‌ بیماری‌ است‌، حالت‌ خصومت‌ آنها را به‌ خود نگیرید. محیط‌ خانه‌ را طوری‌ تغییر دهید که‌ فرد بیمار دچار آسیب‌ بدنی‌ نشود.

  • اگر مراقبت‌ از یکی‌ از اعضای‌ خانواده‌ که‌ دچار این‌ بیماری‌ است‌ را به‌ عهده‌ دارید، از دیگران‌ درخواست‌ کمک‌ کنید تا بتوانید به‌ خود استراحت‌ دهید. از اینکه‌ نیاز به‌ استراحت‌ و فراغت‌ دارید احساس‌ گناه‌ نکنید حتی‌ اگر بیمار از این‌ مسأله‌ احساس‌ رضایت‌ نداشته‌ باشد.

  • اگر گروه‌ حمایتی‌ برای‌ خانواده‌ بیماران‌ آلزایمر وجود دارد به‌ آن‌ بپیوندید و اگر وجود ندارد به‌ ایجاد آن‌ اهتمام‌ ورزید.

  • افراد مراقبت‌کننده‌ از بیمار می‌توانند برخی‌ از مشکلات‌ بیمار را با اجرای‌ بعضی‌ کارها کاهش‌ دهند. مانند تکرار ، برای‌ بیمارانی‌ که‌ مشکلی‌ در حافظه‌ دارند شاید یادآوری‌ مکرر کمک‌کننده‌ باشد. و اطمینان‌دهی‌ که یک‌ گفتگوی‌ صمیمانه‌ مختصر و در عین‌ حال‌ قوی‌ می‌تواند بیمار مضطرب‌ یا آشفته‌ را آرام‌ کند. و منحرف‌ کردن‌ ذهن‌ بیمار ، که قدم‌ زدن‌ با بیمار می‌تواند در این‌ زمینه‌ کمک‌کننده‌ باشد.

داروها

خیلی‌ از داروهایی‌ که‌ برای‌ مشکلات‌ دیگر مورد استفاده‌ قرار می‌گیرند می‌توانند باعث‌ گیجی‌ یا خواب‌آلودگی‌ شوند. این‌ داروها را باید حتی‌الامکان‌ قطع‌ کرد. هم‌اکنون‌ داروهای‌ زیاد دیگری‌ تحت‌ بررسی‌ هستند. بعضی‌ از آنها برای‌ کنترل‌ علایم‌ آشفتگی‌ مفید هستند. داروهای‌ جدیدی‌ که‌ با نسخه‌ پزشک‌ تجویز می‌شوند ممکن‌ است‌ پیشرفت‌ بیماری‌ را در بعضی‌ از بیماران‌ به‌ تأخیر اندازد.

فعالیت و رژیم غذایی‌

تا حدی‌ که‌ امکان‌ دارد بیمار آلزایمری‌ باید فعالیت‌ خود را حفظ‌ کند. با پیشرفت‌ بیماری‌، نهایتا تمامی‌ فعالیتها نیاز به‌ نظارت‌ خواهند داشت‌.
رژیم‌ غذایی‌ عادی‌. نهایتاً بیمار برای‌ غذا خوردن‌ به‌ کمک‌ نیاز خواهد داشت‌.



تصویر

آیا این بیماری حالت ارثی هم دارد؟

سن بالا ، سابقه خانوادگی ، جنس مونث بودن و سندرم داون ، مهمترین عوامل خطر ساز برای آلزایمر هستند. در جمعیتهای غربی ، خطر تجربی آلزایمر در سرتاسر عمر ، 5 درصد است. اگر بیماران ، خویشاوند درجه اولی داشته باشند که آلزایمر در او پس از 65 سالگی بروز کرده باشد، خطر نسبی ابتلای آنها 3 - 6 برابر ، افزایش می‌یابد. اگر بیماران خواهر یا برادری مبتلا به آلزایمر پیش از 60 سالگی و نیز یک والد مبتلا باشند، خطر نسبی آنها 7 - 9 برابر می‌شود.

آزمایش آپولیپوپروتئین A نوعی آزمایش تشخیصی کمکی است و نباید برای پیش بینی آلزایمر در بیماران بی‌علامت استفاده شود. مبتلایان به سندرم داون ، افزایش خطر ابتلا به آلزایمر را نشان می‌دهند. پس از 40 سالگی ، مبتلایان به سندرم داون ، همواره یافته‌های آسیب شناختی عصبی آلزایمر را دارند و تقریبا 50 درصد آنها ، دچار افت شناختی می‌شوند.

نوشته شده در تاريخ 89/09/25 توسط  محمدصادق
ویروسها یکی از کوچکترین عوامل بیماریزا در جانداران هستند که اندازه آنها بین 300 - 200 نانومتر است. ویروسها انگل داخل سلولی هستند که این خصوصیت مهمترین تفاوت ویروسها با بقیه میکروارگانیسمهاست. به نظر می‌رسد که ویروسها قبل از یوکاریوتها بوجود آمده‌اند. به ویروسها فاژ نیز گفته می‌شود.

اطلاعات اولیه

قبل از هر چیز باید بدانیم که آیا ویروسها موجودات زنده محسوب می‌شوند یا نه. یک تعریف میگوید: حیات عبارت است از یکسری فرایندهای پیچیده حاصل از دستورالعملهای خاصی که بوسیله اسید نوکلئیک سلولهای زنده همواره در فعالیت می‌باشد. چون ویروسها در خارج از بدن میزبان به حالت خنثی بسر می‌برند به این مفهوم نمی‌توان آنها را موجود زنده در نظر گرفت. معهذا هنگامی که ویروسها وارد سلول میزبان می‌شوند اسیدهای نوکلئیک آنها فعال گشته و منجر به تکثیر ویروس می‌گردد. از نظر بالینی ویروسها را می‌توان موجودات زنده در نظر گرفت زیرا آنها مانند باکتریها ، قارچهای بیماریزا آلودگی و بیماری ایجاد می‌کنند. به ویروس کامل ویریون گفته می‌شود.

ساختمان شیمیایی ویروس

اسید نوکلئیک

یک ذره ویروسی دارای یک هسته مرکزی اسید نوکلئیکی DNA یا RNA به عنوان ماده ژنتیکی می‌باشد. نسبت اسید نوکلئیک به پروتئین غلاف ویروس از یک درصد در ویروس آنفلوانزا تا 50 درصد در برخی از باکتریوفاژها متغیر است. برخلاف سلولهای پروکاریوتیک و یوکاریوتیک که همواره دارای DNA به عنوان ماده ژنتیکی اصلی خود هستند ویروسها دارای یکی از دو نوع اسید نوکلئیک بوده و هرگز هر دو را باهم ندارد. اسید نوکلئیک در بعضی ویروسها به شکل خطی و در بعضی به شکل حلقوی می‌باشد.

کپسید

اسید نوکلئیک ویروس بوسیله غلاف پروتئینی به نام کپسید احاطه شده است. کپسید ویروس که معماری آن بوسیله اسید نوکلئیک ویروسی تعیین می‌شود بخش عمده ویروس را بویژه در ویروسهای کوچک شامل می‌شود. هر کپسید از واحدهای کوچک پروتئینی به نام کپسومر ساخته شده است. نظم و ترتیب قرار گرفتن کپسومرها ، شکل کلی و پیکر ویروس را تعیین می‌کند که برای هر ویروس خاص ثابت است.

پوشش غیر پروتئینی

در عده‌ای از ویروسها کپسید بوسیله پوششی که معمولا ترکیبی از لیپیدها ، پروتئینها و کربوهیدراتها است پوشیده شده است.

img/daneshnameh_up/1/11/viros01.JPG


ویروسهای ناقص Defctive Virus

ویروسهای ناقص یا نارس از نظر عملکرد ویروسهایی هستند که از اسید نوکلئیک و پروتئین تشکیل شده‌اند، ولی بدون ویروس کمکی توان تکثیر ندارند. که به این ویروس کمکی Helper ویروس گفته می‌شود. ویروسهای ناقص در ساختمان ژنتیکی خود نقصی دارند و در خلال تکثیر در داخل سلول بوجود می‌آیند و چون این ویروسها می‌توانند تکثیر ویروسهای معمولی را مختل کنند تصور می‌شود که این ویروسها با تکثیر زیاد خود از تکثیر ویروسهای معمولی جلوگیری می‌کنند پس در بهبود بیماری نقش دارند.

ویریون

به یک ذره ویروسی که توان آلوده کردن سلول را دارد گفته می‌شود. به ورود ویروس به داخل سلول عفونت یا آلودگی سلول گفته می‌شود که می‌تواند علایم بالینی داشته باشد یا نه.

سودو ویریون

پارتیکولها یا ذرات ویروسی‌اند که به جای ژنوم ویروس تکه‌ای از ژنوم سلول میزبان به آن وارد شده است.

ویروتید

از یک مولکول منفرد و حلقوی RNA تشکیل شده که معمولا پاتوژن گیاهان‌اند و فاقد کپسید و پوشش‌اند.

ویروسوئید

با وجود یک ویروس کمکی می‌توانند کپسید پروتئینی داشته باشند و در گیاهان از گیاهی به گیاه دیگر منتقل شوند.

ویروسهای گیاهی

ویروسها در جلبکها ، قارچها ، گلسنگها ، خزه‌ها ، سرخسها و گیاهان عالی دیده شده‌اند. ولی در گیاهان عالی بیش از گیاهان پست مورد مطالعه قرار گرفته‌اند. ویروسها به گیاهان زراعی خسارت عمده‌ای وارد می‌سازند. چون پاره‌ای از ویروسهای گیاهی چندان شباهتی با ویروسهای دیگر ندارند بنابراین گروه مستقلی را تشکیل می‌دهند. ولی بعضی از آنها دارای خصوصیات مشترک بوده و می‌توان آنها را در یک گروه قرار داد. این گروهها به شرح زیر هستند.
  • ویروسهای میله‌ای یا رشته‌ای
  • ویروسهای ایزو دیامتریک
  • ویروسهای باسیلی شکل
  • ویروئیدها: بیماریزاهایی شبیه ویروسها هستند که در میزبان خود نوکلئو پروتئین تولید نمی‌کنند.

ویروسهای جانوری

ویروس از انواع مختلف جانوران از تک یاختگان تا انسان جدا شده است. میزبان مهم ویروسها در بی‌مهره‌گان ، بندپایان هستند خصوصا کنه‌ها و حشرات. پاره‌ای از ویروسها در عین حال که در حشرات تکثیر می‌یابند می‌توانند در گیاه یا در جانور مولد بیماری باشند، ولی برای خود حشرات بیماریزا محسوب نمی‌شوند. ویروسها در اکثر مهره‌داران فعالیت دارند و در ماهیها ، دوزیستان ، پرندگان و پستانداران بیماریهایی تولید می‌کنند که گاهی علایم آنها به صورت تومور نمایان می‌شود. ویروسها در انسان نیز بیماریهای گوناگونی مانند اوریون ، سرخک ، تب زرد ، آبله ، آنفلوانزا و ... ایجاد می‌کنند.

img/daneshnameh_up/2/2e/ویروس.JPG


تکثیر ویروسها

اسید نوکلئیک هر ویریون فقط تعداد معدودی از ژنهای لازم برای سنتز ویروسهای جدید را دارا می‌باشد. اکثر آنزیمهای ویروسها توسط سلول میزبان ساخته می‌شوند. نقش آنزیمهای ویروس تقریبا بطور کامل با همانند سازی و آماده کردن اسید نوکلئیک ویروسی ارتباط دارد و هرگز با دستگاه سنتز پروتئینی را تولید انرژی رابطه‌ای ندارد. مراحل 5 گانه تکثیر ویروس در سلول میزبان به صورت زیر است.
  • مرحله رونشینی ویروسها بر روی سلول
  • مرحله ورود و نفوذ در سلول
  • مرحله بیوسنتز اجزای ویروسی
  • مرحله رسیدن و کامل شدن ویروس
  • مرحله آزاد شدن ویروس از سلول میزبان و نفوذ آن در سلولهای سالم

رده بندی ویروسها از روی محل تاثیر آن بر روی میکرو ارگانیسمها

اندام تحت تاثیر ویروس نوع بیماری
بیماریهای عمومی(بیماریهایی که در آن ویروسها از طریق خون و لنف به همه جای بدن منتقل می‌شوند.) آبله انسانی ، آبله گاوی ، سرخک ، سرخجه ، آبله مرغان و تب زرد
سیستم عصبی آنسفالیت ، هاری و مننژیت
سیستم تنفسی آنفلوانزا ، ذات‌الریه و برونشیت
پوست و غشاهای مخاطی تبخال ، زگیل و زونا
چشم انواع گوناگون ورم ملتحمه چشم
کبد هپاتیت و تب زرد
دستگاه گوارش ویروس A گاسترو آنتریت و ویروس B گاسترو آنتریت

شیمی درمانی علیه ویروسها

داروهایی که در مراحل مختلف تکثیر ویروسها در بدن میزبان اثر می‌کنند در تجربیات آزمایشگاهی موثر شناخته شده‌اند. ولی از نظر بالینی آمانتادین ، آسیکلوویر ، ویدارابین و تیو سمی کاربازون مفید شناخته شده‌اند. در اغلب بیماریهای ویروسی تکثیر ویروس تقریبا قبل از ظاهر شدن علایم بیماری پایان پذیرفته است. مساله دیگر پیدایش ویروسهای جهش یافته مقاوم نسبت به این داروها می‌باشد و کثرت وقوع آنها به اندازه باکتریها می‌باشد. شیمی درمانی علیه ویروسها در مراحل اولیه است و می‌توان در آینده داروهایی علیه ویروسها کشف کرد
نوشته شده در تاريخ 89/09/24 توسط  محمدصادق
چرا اندازه گیری می‌کنیم؟
قوانین و نظریات فیزیک بصورت معادلات ریاضی بیان می‌شوند. حال ما از کجا بدانیم که هر معادله خاص ، رفتار چیزی را بیان می‌کند؟ باید این قاعده امتحان شود و به مرحله آزمون گذاشته شود. بنابراین ، اندازه گیری مهارتی است که میان نظریه علمی و دنیای واقعی رابطه ایجاد می‌کند. این رابطه دو طرفه می‌باشد. هر رویداد اندازه گیری شده‌ای که قبلا پیشگویی نشده باشد، باید نظریه جدید آنرا توجیه کند.

اشخاصی که کار تجربی انجام می‌دهند باید اطلاعات فنی جامعی از اصول اندازه گیری داشته باشند. نحوه اندازه گیری و محدودیتهای ناشی از وسایل اندازه گیری را بشناسد. هر دانشمندی فقط با دانستن اینکه چه اندازه گیریهایی انجام شده است و نحوه اندازه گیریها چگونه بوده است، می‌تواند اثر و کشفیات دانشمندان دیگر را خوب بفهمد. بنابراین ، اندازه گیری هنری است که در حال حاضر تکنولوژی پیشرفته حامی آن است.



تصویر




دقت در اندازه گیری

در اندازه گیریها جواب کامل نداریم، هر کسی که نتیجه اندازه گیری خود را گزارش می‌کند، همواره بهترین تخمین خود را از مقدار اصلی ، همراه با خطای اندازه گیری آن ، ارائه می‌دهد. یعنی اگر طول جسمی بصورت 183±5mm نوشته شود، منظور نویسنده این است که مقدار واقعی طول بین 178 و 188mm قرار دارد. صحت اندازه گیری از روی تطابق آن با واقعیت نتیجه می‌شود. خطای زیاد بیانگر عدم اعتماد آزمایشگر بر اندازه گیری است. اندازه گیری دقیق ، اندازه گیریی است که خطای آن ، در مقایسه با مقدار اندازه گیری شده بسیار کوچک باشد.

در مثال اخیر خطای نسبی اندازه گیری برابر است با: %100=± %2. 74 × (±5/183). دقت اندازه گیری به مهارت آزمایشگر در تخمین زنی ، مکانیزم عمل اندازه گیری ، حد تفکیک وسیله اندازه گیری ، حد تفکیک چشم و غیره بستگی دارد. البته درستی اندازه گیری به طبیعت جسمی که اندازه گیری می‌شود نیز وابسته است. بنابراین ، صحت تمامی اندازه گیریها ، به دلیل محدودیت در دقت (تکرار پذیری آزمایش) و خطای ناشی از طبیعت وسیله اندازه گیری و جسمی که اندازه گیری می‌شود، محدود است.

ارقام با معنی

پذیرش میزان خطا در اندازه گیری و نوع ریاضیاتی که در تخمین و محاسبات داده‌ها‌ی آزمایش و نحوه قرائت آنها بستگی دارد. یک روش اصولی برای ارزیابی صحت اندازه گیری و پذیرش آن توجه به تعداد ارقام با معنی آن است. تعداد ارقام بامعنی ، درستی و دقت اندازه گیری را می‌رساند. به عبارتی هر چه اندازه گیریی دقیقتر باشد مقدار ارقام با معنی نتیجه اندازه گیری بیشتر خواهد بود. آخرین رقم با معنی در اندازه گیری همیشه تخمینی است. مثلا اگر در اثر اندازه گیری طول اتاقی 720cm باشد، مفهوم این است که اندازه گیری با سه رقم معنی دار انجام شده است که رقم آخر آن صفر می‌باشد که ممکن است درست یا غلط باشد.

صفرهای موجود در عدد گزارش شده ممکن است با معنی باشند یا محل ممیز را نشان دهند. مثلا طول 802mm که یک عدد دو رقمی است، بر حسب متر برابر 0.0082 است، چون نتیجه تغییر نکرده پس این طول بر حسب متر هم یک عدد دو رقمی است. بنابراین قاعده کلی این است که: صفرهای سمت چپ هرگز معنی دار نیستند. صفرهای پایانی نیز ممکن است معنی دار باشند یا نباشند. اگر طول زمینی را 230m اندازه بگیرید، در این اندازه گیری عدد گزارش شده دارای 4 رقم با معنی است، البته بدون ممیز تشخیص معنی دارابودن یا نبودن رقم آخر با قطعیت مشخص نمی‌شود ، مگر اینکه از نحوه اندازه گیری اطلاعی داشته باشیم.

در مورد اندازه گیری مذکور بهتر است داشته باشیم 230.0 ، در چنین حالتی می‌گوییم دقت اندازه گیری تا 0.1 اعشار درست است. در جمع و تفریق اندازه گیریها انتشار خطا خواهیم داشت. مثلا خطای اندازه گیری با دقت 0.1 به اندازه گیری با دقت 0.001 سرایت می‌کند. البته در اندازه گیریها ، پردازش داده‌های اندازه گیری ، روش گرد کردن و محاسبه خطا (نسبی و مطلق) وجود دارد که میزان اعتبار و دقت اندازه گیری را بیان می‌نماید. معیار اصلی در گزارش اندازه گیری و مقادیر حاصل از آنها ، کاربرد دقیق تعداد ارقام با معنی است.

نمادگذاری علمی

اگر تمامی فواصل در متریک SI نوشته شود، هنگام نوشتن فاصله تا نزدیکترین ستاره (عدد بزرگ) یا هنگام نوشتن قطر هسته اتم (عدد کوچک) کار مشکل خواهد بود. در مورد ستاره 15 صفر در پایان و در هسته 15 صفر در ابتدای عدد وجود دارد. تنها تکلیف این صفرها مشخص نمودن محل ممیز می‌باشد. بهترین راه برای حل مشکل استفاده از نماد گذاری علمی است. در این روش در هر عدد ممیز را بعد از اولین رقم غیر صفر نوشته و سپس آنرا در توانی از 10 ضرب می‌کنند تا محل ممیز را نشان دهند. مثلا عدد 142000 در نماد گذاری علمی بصورت زیر در می‌آید:


105×100000 = 1.42 × 142000 = 1.42

در واقع بهترین راه نوشتن اعداد بسیار بزرگ و کوچک همین است. البته در این روش تشخیص تعداد ارقام با معنی و محل ممیز راحت است. بخصص در مورد صفرها که کار بسیار راحت شده است. مزیت مهمی که نمادگذاری علمی دارد، این است که حساب در نماد گذاری علمی راحت صورت می‌گیرد. یعنی افزودن به توانهای 10 راحتتر از شمردن صفرهاست. یعنی محاسبات اعشاری چه در اعداد کوچک و چه در اعداد بزرگ به محاسبات توانی تبدیل می‌شود که براحتی انجام می‌گیرد. البته در جمع و تفرق اعداد که توان برابر ندارند، ابتدا بایستی ممیز را در یکی از اعداد جابجا کرده و توان آنها را یکی نمود.

بعد اندازه گیری

هر اندازه گیری از دو قسمت عدد و نشان تشکیل شده است. مثلا اگر بگویید وزن من 60 است، مخاطب چیزی از این عدد نمی‌فهمد. مگر اینکه بگویید قد من 60 کیلوگرم است. برای کلیه اندازه گیریها باید یک شاخصی برای معرفی عدد در کنارش باشد تا به آن عدد ریاضی مفهوم واقعی دهد. برای کمیات مختلف یکاهای متعددی مطرح شده که در محاسبات و اندازه گیریها باید آنها را به یک یکای مشترک تبدیل کرد. به عبارت دیگر باید در یک متریک واحد اندازه گیریها را انجام داده و نتیجه را هم یا در آن متریک و یا با تبدیلات مربوطه در دستگاه دیگری بیان کرد. زیرا در اندازه گیریها و محاسبات فقط کمیاتی را که بعد یکسانی دارند، می‌توان با استفاده از یکاهای تبدیل باهم جمع یا از هم تفریق و یا باهم مقایسه کرد
نوشته شده در تاريخ 89/09/24 توسط  محمدصادق
معمولا مرسوم است که مردم برای شمارش هر چیز از واحد خاصی استفاده می‌کنند. بعنوان مثال برای شمارش شتر از واحد نفر و برای شمارش فرش یا پتو از واحد تخته استفاه می‌کنند. بنابراین همانگونه که برای شمارش به یک واحدهایی نیاز داریم که همه مردم با این واحدها آشنا باشند، در مبحث اندازه‌ گیری نیز نیاز به یک سری واحد خاص احساس می‌شود.

پیدایش


برای اینکه کنترلی بر روی این واحد ها وجود داشته باشد، اداره‌ای تحت عنوان اداره مرکزی استانداردها بوجود آمد. چون اداره مرکزی دفتر بین المللی استانداردها در پاریس ، محل ابداع سیستم متریک ، واقع است نام این سیستم فرانسوی است. سیستم‌های سنتی اندازه گیری در طول قرنها تکامل یافته‌اند و در کشورهای مختلف متفاوت هستند. تنها وجه اشتراک آنها این است که هیچ گونه مفهومی ندارد. به عبارت دیگر می‌توان گفت که این سیستم‌های سنتی با تفکر کافی ابداع نشده است. سیستم SI ، سیستمی است که آگاهانه ابداع شده است و روابط خیلی ساده تر است.

انواع دستگاههای متریک استاندارد


  • دستگاه گاوسی

    این دستگاه در بسیاری از متون فیزیکی مورد استفاده قرار می گیرد. این دستگاه ترکیبی از دو دستگاه قدیمیتر الکترواستاتیکی (esu) و دستگاه الکترومغناطیسی(emu) ‌است. در دستگاه الکترواستاتیکی واحد الکترواستاتیکی بار esu می‌باشد و به عنوان باری تعریف می‌شود که هنگام قرار گرفتن در فاصله یک سانتیمتری از یک بار کاملا مشابه نیرویی برابر با یک دین به آن وارد می‌شود. بنابر این می‌توان گفت که این دستگاه ، یک دستگاه دورگه است. نقطه اصلی ارتباط این دو در چگالی جریان است. یعنی Jemu=Jesu/C

  • دستگاه انگلیسی

    این دستگاه هنوز هم در آمریکا ، انگلیس و برخی کشورهای دیگر به کار می‌رود. کمیت‌های اصلی این دستگاه در مکانیک عبارتند از : طول فوت) ، نیرو (پوند) ، جرم (گرم) ، زمان (ثانیه) است. در انگلیس به تدریج دستگاه انگلیسی به نفع دستگاه بین‌المللی که پذیرش رسمی پیدا کرده است، کنار گذاشته می‌شود.

  • دستگاه بین المللی SI

    در این دستگاه هیچگونه ضریبی به کار نمی‌رود، لذا خیلی ساده‌تر است. در این سیستم هفت یکای اصلی وجود دارد. با ضرب و تقسیم این هفت یکا ، یکاهای دیگری بدست می‌آیند که یکاهای فرعی نام دارند. یکاهای اصلی عبارتند از : طول (متر) ، جرم (کیلوگرم) ، زمان (ثانیه) ، دما (کلوین) ، جریان الکتریکی (آمپر) ، شدت درخشانی (شمع) ، تعداد ذرات «مول).


.: Weblog Themes By Pichak :.


جاوا اسكریپت

تمامی حقوق این وبلاگ محفوظ است | طراحی : پیچک
  • دانلود نرم افزار
  • قالب وبلاگ